hackerbyhobby
commited on
updated requirements and added apt.txt
Browse files
app.py
CHANGED
@@ -4,39 +4,75 @@ from PIL import Image
|
|
4 |
from transformers import pipeline
|
5 |
import re
|
6 |
|
7 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
with open("smishing_keywords.txt", "r", encoding="utf-8") as f:
|
9 |
SMISHING_KEYWORDS = [line.strip().lower() for line in f if line.strip()]
|
10 |
|
11 |
with open("other_scam_keywords.txt", "r", encoding="utf-8") as f:
|
12 |
OTHER_SCAM_KEYWORDS = [line.strip().lower() for line in f if line.strip()]
|
13 |
|
14 |
-
# 2.
|
15 |
model_name = "joeddav/xlm-roberta-large-xnli"
|
16 |
classifier = pipeline("zero-shot-classification", model=model_name)
|
17 |
-
|
18 |
-
# We will classify among these three labels
|
19 |
CANDIDATE_LABELS = ["SMiShing", "Other Scam", "Legitimate"]
|
20 |
|
21 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
"""
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
27 |
"""
|
28 |
lower_text = text.lower()
|
29 |
|
30 |
-
#
|
31 |
-
|
32 |
-
# Count other scam keywords
|
33 |
-
other_scam_keyword_count = sum(1 for kw in OTHER_SCAM_KEYWORDS if kw in lower_text)
|
34 |
|
35 |
-
#
|
36 |
-
|
37 |
-
|
|
|
38 |
|
39 |
-
#
|
|
|
|
|
|
|
|
|
40 |
found_urls = re.findall(r"(https?://[^\s]+)", lower_text)
|
41 |
if found_urls:
|
42 |
smishing_boost += 0.35
|
@@ -50,7 +86,7 @@ def boost_probabilities(probabilities: dict, text: str) -> dict:
|
|
50 |
p_smishing += smishing_boost
|
51 |
p_other_scam += other_scam_boost
|
52 |
|
53 |
-
# Subtract total boost from Legitimate
|
54 |
total_boost = smishing_boost + other_scam_boost
|
55 |
p_legit -= total_boost
|
56 |
|
@@ -62,28 +98,30 @@ def boost_probabilities(probabilities: dict, text: str) -> dict:
|
|
62 |
if p_legit < 0:
|
63 |
p_legit = 0.0
|
64 |
|
65 |
-
# Re-normalize
|
66 |
total = p_smishing + p_other_scam + p_legit
|
67 |
if total > 0:
|
68 |
p_smishing /= total
|
69 |
p_other_scam /= total
|
70 |
p_legit /= total
|
71 |
else:
|
72 |
-
# fallback if everything is
|
73 |
p_smishing, p_other_scam, p_legit = 0.0, 0.0, 1.0
|
74 |
|
75 |
return {
|
76 |
"SMiShing": p_smishing,
|
77 |
"Other Scam": p_other_scam,
|
78 |
-
"Legitimate": p_legit
|
|
|
79 |
}
|
80 |
|
81 |
def smishing_detector(text, image):
|
82 |
"""
|
83 |
-
|
|
|
84 |
2. Zero-shot classify => base probabilities.
|
85 |
-
3.
|
86 |
-
4. Return final classification
|
87 |
"""
|
88 |
combined_text = text or ""
|
89 |
if image is not None:
|
@@ -96,12 +134,11 @@ def smishing_detector(text, image):
|
|
96 |
"text_used_for_classification": "(none)",
|
97 |
"label": "No text provided",
|
98 |
"confidence": 0.0,
|
99 |
-
"
|
100 |
-
"other_scam_keywords_found": [],
|
101 |
"urls_found": []
|
102 |
}
|
103 |
|
104 |
-
#
|
105 |
result = classifier(
|
106 |
sequences=combined_text,
|
107 |
candidate_labels=CANDIDATE_LABELS,
|
@@ -109,29 +146,47 @@ def smishing_detector(text, image):
|
|
109 |
)
|
110 |
original_probs = dict(zip(result["labels"], result["scores"]))
|
111 |
|
112 |
-
#
|
113 |
-
|
114 |
-
final_label = max(
|
115 |
-
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
-
#
|
118 |
lower_text = combined_text.lower()
|
119 |
-
|
120 |
-
|
|
|
121 |
found_urls = re.findall(r"(https?://[^\s]+)", lower_text)
|
122 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
return {
|
|
|
124 |
"text_used_for_classification": combined_text,
|
125 |
"original_probabilities": {
|
126 |
k: round(v, 3) for k, v in original_probs.items()
|
127 |
},
|
128 |
"boosted_probabilities": {
|
129 |
-
k: round(v, 3) for k, v in
|
130 |
},
|
131 |
"label": final_label,
|
132 |
"confidence": final_confidence,
|
133 |
-
"smishing_keywords_found":
|
134 |
-
"other_scam_keywords_found":
|
135 |
"urls_found": found_urls,
|
136 |
}
|
137 |
|
@@ -149,15 +204,12 @@ demo = gr.Interface(
|
|
149 |
)
|
150 |
],
|
151 |
outputs="json",
|
152 |
-
title="SMiShing & Scam Detector (
|
153 |
description="""
|
154 |
This tool classifies messages as SMiShing, Other Scam, or Legitimate using a zero-shot model
|
155 |
-
(joeddav/xlm-roberta-large-xnli).
|
156 |
-
-
|
157 |
-
|
158 |
-
- Any URL found further boosts ONLY Smishing.
|
159 |
-
- The total boost is subtracted from Legitimate.
|
160 |
-
Supports English & Spanish text (OCR included).
|
161 |
""",
|
162 |
allow_flagging="never"
|
163 |
)
|
|
|
4 |
from transformers import pipeline
|
5 |
import re
|
6 |
|
7 |
+
# Language detection & translation
|
8 |
+
from langdetect import detect
|
9 |
+
from googletrans import Translator
|
10 |
+
|
11 |
+
translator = Translator()
|
12 |
+
|
13 |
+
# 1. Load separate keywords for SMiShing and Other Scam (assumed in English)
|
14 |
with open("smishing_keywords.txt", "r", encoding="utf-8") as f:
|
15 |
SMISHING_KEYWORDS = [line.strip().lower() for line in f if line.strip()]
|
16 |
|
17 |
with open("other_scam_keywords.txt", "r", encoding="utf-8") as f:
|
18 |
OTHER_SCAM_KEYWORDS = [line.strip().lower() for line in f if line.strip()]
|
19 |
|
20 |
+
# 2. Zero-Shot Classification Pipeline
|
21 |
model_name = "joeddav/xlm-roberta-large-xnli"
|
22 |
classifier = pipeline("zero-shot-classification", model=model_name)
|
|
|
|
|
23 |
CANDIDATE_LABELS = ["SMiShing", "Other Scam", "Legitimate"]
|
24 |
|
25 |
+
def get_keywords_by_language(text: str):
|
26 |
+
"""
|
27 |
+
1. Detect language (using `langdetect`).
|
28 |
+
2. If Spanish ('es'), translate each English-based keyword to Spanish using googletrans.
|
29 |
+
3. If English (or anything else), just use the original English lists.
|
30 |
+
"""
|
31 |
+
# Attempt to detect language from a snippet (to reduce overhead on very large text)
|
32 |
+
snippet = text[:200] # up to 200 chars for detection
|
33 |
+
try:
|
34 |
+
detected_lang = detect(snippet)
|
35 |
+
except:
|
36 |
+
detected_lang = "en" # fallback if detection fails
|
37 |
+
|
38 |
+
if detected_lang == "es":
|
39 |
+
# Translate all SMiShing and Other Scam keywords to Spanish
|
40 |
+
smishing_in_spanish = [
|
41 |
+
translator.translate(kw, src="en", dest="es").text.lower()
|
42 |
+
for kw in SMISHING_KEYWORDS
|
43 |
+
]
|
44 |
+
other_scam_in_spanish = [
|
45 |
+
translator.translate(kw, src="en", dest="es").text.lower()
|
46 |
+
for kw in OTHER_SCAM_KEYWORDS
|
47 |
+
]
|
48 |
+
return smishing_in_spanish, other_scam_in_spanish, "es"
|
49 |
+
else:
|
50 |
+
# Default to English keywords
|
51 |
+
return SMISHING_KEYWORDS, OTHER_SCAM_KEYWORDS, "en"
|
52 |
+
|
53 |
+
def boost_probabilities(probabilities: dict, text: str):
|
54 |
"""
|
55 |
+
1. Load the appropriate keyword lists (English or Spanish).
|
56 |
+
2. Count matches for SMiShing vs. Other Scam.
|
57 |
+
3. If a URL is found, add an extra boost only to SMiShing.
|
58 |
+
4. Subtract total boost from 'Legitimate'.
|
59 |
+
5. Clamp negative probabilities to 0, re-normalize.
|
60 |
"""
|
61 |
lower_text = text.lower()
|
62 |
|
63 |
+
# Grab the correct keyword lists based on language
|
64 |
+
smishing_keywords, other_scam_keywords, detected_lang = get_keywords_by_language(text)
|
|
|
|
|
65 |
|
66 |
+
# Count SMiShing keyword matches
|
67 |
+
smishing_count = sum(1 for kw in smishing_keywords if kw in lower_text)
|
68 |
+
# Count Other Scam keyword matches
|
69 |
+
other_scam_count = sum(1 for kw in other_scam_keywords if kw in lower_text)
|
70 |
|
71 |
+
# Base boost amounts
|
72 |
+
smishing_boost = 0.30 * smishing_count
|
73 |
+
other_scam_boost = 0.30 * other_scam_count
|
74 |
+
|
75 |
+
# Check for URLs => +0.35 only to SMiShing
|
76 |
found_urls = re.findall(r"(https?://[^\s]+)", lower_text)
|
77 |
if found_urls:
|
78 |
smishing_boost += 0.35
|
|
|
86 |
p_smishing += smishing_boost
|
87 |
p_other_scam += other_scam_boost
|
88 |
|
89 |
+
# Subtract total boost from 'Legitimate'
|
90 |
total_boost = smishing_boost + other_scam_boost
|
91 |
p_legit -= total_boost
|
92 |
|
|
|
98 |
if p_legit < 0:
|
99 |
p_legit = 0.0
|
100 |
|
101 |
+
# Re-normalize
|
102 |
total = p_smishing + p_other_scam + p_legit
|
103 |
if total > 0:
|
104 |
p_smishing /= total
|
105 |
p_other_scam /= total
|
106 |
p_legit /= total
|
107 |
else:
|
108 |
+
# fallback if everything is 0
|
109 |
p_smishing, p_other_scam, p_legit = 0.0, 0.0, 1.0
|
110 |
|
111 |
return {
|
112 |
"SMiShing": p_smishing,
|
113 |
"Other Scam": p_other_scam,
|
114 |
+
"Legitimate": p_legit,
|
115 |
+
"detected_lang": detected_lang
|
116 |
}
|
117 |
|
118 |
def smishing_detector(text, image):
|
119 |
"""
|
120 |
+
Main function called by Gradio.
|
121 |
+
1. Combine user text + OCR text (if an image is provided).
|
122 |
2. Zero-shot classify => base probabilities.
|
123 |
+
3. Apply language detection & translation if needed, then boost logic.
|
124 |
+
4. Return final classification.
|
125 |
"""
|
126 |
combined_text = text or ""
|
127 |
if image is not None:
|
|
|
134 |
"text_used_for_classification": "(none)",
|
135 |
"label": "No text provided",
|
136 |
"confidence": 0.0,
|
137 |
+
"keywords_found": [],
|
|
|
138 |
"urls_found": []
|
139 |
}
|
140 |
|
141 |
+
# 1. Zero-shot classification
|
142 |
result = classifier(
|
143 |
sequences=combined_text,
|
144 |
candidate_labels=CANDIDATE_LABELS,
|
|
|
146 |
)
|
147 |
original_probs = dict(zip(result["labels"], result["scores"]))
|
148 |
|
149 |
+
# 2. Boost logic (including language detection + translation)
|
150 |
+
boosted = boost_probabilities(original_probs, combined_text)
|
151 |
+
final_label = max(boosted, key=boosted.get) if not isinstance(boosted.get("detected_lang"), float) else "Legitimate"
|
152 |
+
# to avoid conflict, let's store the detected language separately:
|
153 |
+
detected_lang = boosted.pop("detected_lang", "en")
|
154 |
+
|
155 |
+
# We have p_smishing, p_other_scam, p_legit left in boosted
|
156 |
+
final_label = max(boosted, key=boosted.get)
|
157 |
+
final_confidence = round(boosted[final_label], 3)
|
158 |
|
159 |
+
# 3. Identify which keywords & URLs we found
|
160 |
lower_text = combined_text.lower()
|
161 |
+
# If we detected Spanish, we used the translated keywords to do matching. But let's also show them:
|
162 |
+
# For demonstration, let's just show the "English or Spanish" keywords. The code to show them in output
|
163 |
+
# can be the same as before, or you can do a second pass with the same logic from boost_probabilities.
|
164 |
found_urls = re.findall(r"(https?://[^\s]+)", lower_text)
|
165 |
|
166 |
+
# We'll do a quick second pass on actual matched keywords so user sees them
|
167 |
+
# - If language is es => we used translated Spanish keywords, let's do the same for display
|
168 |
+
# - If language is en => we used the original English lists
|
169 |
+
if detected_lang == "es":
|
170 |
+
smishing_keys, scam_keys, _ = get_keywords_by_language(combined_text)
|
171 |
+
else:
|
172 |
+
smishing_keys, scam_keys, _ = (SMISHING_KEYWORDS, OTHER_SCAM_KEYWORDS, "en")
|
173 |
+
|
174 |
+
found_smishing = [kw for kw in smishing_keys if kw in lower_text]
|
175 |
+
found_other_scam = [kw for kw in scam_keys if kw in lower_text]
|
176 |
+
|
177 |
return {
|
178 |
+
"detected_language": detected_lang,
|
179 |
"text_used_for_classification": combined_text,
|
180 |
"original_probabilities": {
|
181 |
k: round(v, 3) for k, v in original_probs.items()
|
182 |
},
|
183 |
"boosted_probabilities": {
|
184 |
+
k: round(v, 3) for k, v in boosted.items()
|
185 |
},
|
186 |
"label": final_label,
|
187 |
"confidence": final_confidence,
|
188 |
+
"smishing_keywords_found": found_smishing,
|
189 |
+
"other_scam_keywords_found": found_other_scam,
|
190 |
"urls_found": found_urls,
|
191 |
}
|
192 |
|
|
|
204 |
)
|
205 |
],
|
206 |
outputs="json",
|
207 |
+
title="SMiShing & Scam Detector (Language Detection + Keyword Translation)",
|
208 |
description="""
|
209 |
This tool classifies messages as SMiShing, Other Scam, or Legitimate using a zero-shot model
|
210 |
+
(joeddav/xlm-roberta-large-xnli). It automatically detects if the text is Spanish or English.
|
211 |
+
If Spanish, it translates the English-based keyword lists to Spanish before boosting the scores.
|
212 |
+
Any URL found further boosts SMiShing specifically.
|
|
|
|
|
|
|
213 |
""",
|
214 |
allow_flagging="never"
|
215 |
)
|