SMS_scam_detection / app.py.working_ocr_selection_prepatch
hackerbyhobby
patched lang detect bug
60ee370 unverified
raw
history blame
6.69 kB
import gradio as gr
import pytesseract
from PIL import Image
from transformers import pipeline
import re
from langdetect import detect
from deep_translator import GoogleTranslator
# Translator instance
translator = GoogleTranslator(source="auto", target="es")
# 1. Load separate keywords for SMiShing and Other Scam (assumed in English)
with open("smishing_keywords.txt", "r", encoding="utf-8") as f:
SMISHING_KEYWORDS = [line.strip().lower() for line in f if line.strip()]
with open("other_scam_keywords.txt", "r", encoding="utf-8") as f:
OTHER_SCAM_KEYWORDS = [line.strip().lower() for line in f if line.strip()]
# 2. Zero-Shot Classification Pipeline
model_name = "joeddav/xlm-roberta-large-xnli"
classifier = pipeline("zero-shot-classification", model=model_name)
CANDIDATE_LABELS = ["SMiShing", "Other Scam", "Legitimate"]
def get_keywords_by_language(text: str):
"""
Detect language using `langdetect` and translate keywords if needed.
"""
snippet = text[:200]
try:
detected_lang = detect(snippet)
except Exception:
detected_lang = "en"
if detected_lang == "es":
smishing_in_spanish = [
translator.translate(kw).lower() for kw in SMISHING_KEYWORDS
]
other_scam_in_spanish = [
translator.translate(kw).lower() for kw in OTHER_SCAM_KEYWORDS
]
return smishing_in_spanish, other_scam_in_spanish, "es"
else:
return SMISHING_KEYWORDS, OTHER_SCAM_KEYWORDS, "en"
def boost_probabilities(probabilities: dict, text: str):
"""
Boost probabilities based on keyword matches and presence of URLs.
"""
lower_text = text.lower()
smishing_keywords, other_scam_keywords, detected_lang = get_keywords_by_language(text)
smishing_count = sum(1 for kw in smishing_keywords if kw in lower_text)
other_scam_count = sum(1 for kw in other_scam_keywords if kw in lower_text)
smishing_boost = 0.30 * smishing_count
other_scam_boost = 0.30 * other_scam_count
found_urls = re.findall(r"(https?://[^\s]+)", lower_text)
if found_urls:
smishing_boost += 0.35
p_smishing = probabilities.get("SMiShing", 0.0)
p_other_scam = probabilities.get("Other Scam", 0.0)
p_legit = probabilities.get("Legitimate", 1.0)
p_smishing += smishing_boost
p_other_scam += other_scam_boost
p_legit -= (smishing_boost + other_scam_boost)
# Clamp
p_smishing = max(p_smishing, 0.0)
p_other_scam = max(p_other_scam, 0.0)
p_legit = max(p_legit, 0.0)
# Re-normalize
total = p_smishing + p_other_scam + p_legit
if total > 0:
p_smishing /= total
p_other_scam /= total
p_legit /= total
else:
p_smishing, p_other_scam, p_legit = 0.0, 0.0, 1.0
return {
"SMiShing": p_smishing,
"Other Scam": p_other_scam,
"Legitimate": p_legit,
"detected_lang": detected_lang
}
def smishing_detector(input_type, text, image):
"""
Only use the textbox if input_type == "Text",
otherwise perform OCR on the image if input_type == "Screenshot".
"""
if input_type == "Text":
combined_text = text.strip() if text else ""
else:
# input_type == "Screenshot"
combined_text = ""
if image is not None:
combined_text = pytesseract.image_to_string(image, lang="spa+eng").strip()
if not combined_text:
return {
"text_used_for_classification": "(none)",
"label": "No text provided",
"confidence": 0.0,
"keywords_found": [],
"urls_found": []
}
# Zero-shot classification
result = classifier(
sequences=combined_text,
candidate_labels=CANDIDATE_LABELS,
hypothesis_template="This message is {}."
)
original_probs = {k: float(v) for k, v in zip(result["labels"], result["scores"])}
# Boost logic
boosted = boost_probabilities(original_probs, combined_text)
boosted = {k: float(v) for k, v in boosted.items() if isinstance(v, (int, float))}
detected_lang = boosted.pop("detected_lang", "en")
final_label = max(boosted, key=boosted.get)
final_confidence = round(boosted[final_label], 3)
lower_text = combined_text.lower()
smishing_keys, scam_keys, _ = get_keywords_by_language(combined_text)
found_urls = re.findall(r"(https?://[^\s]+)", lower_text)
found_smishing = [kw for kw in smishing_keys if kw in lower_text]
found_other_scam = [kw for kw in scam_keys if kw in lower_text]
return {
"detected_language": detected_lang,
"text_used_for_classification": combined_text,
"original_probabilities": {
k: round(v, 3) for k, v in original_probs.items()
},
"boosted_probabilities": {
k: round(v, 3) for k, v in boosted.items()
},
"label": final_label,
"confidence": final_confidence,
"smishing_keywords_found": found_smishing,
"other_scam_keywords_found": found_other_scam,
"urls_found": found_urls,
}
#
# Gradio interface with dynamic visibility
#
def toggle_inputs(choice):
"""
Return updates for (text_input, image_input) based on the radio selection.
"""
if choice == "Text":
# Show text input, hide image
return gr.update(visible=True), gr.update(visible=False)
else:
# choice == "Screenshot"
# Hide text input, show image
return gr.update(visible=False), gr.update(visible=True)
with gr.Blocks() as demo:
gr.Markdown("## SMiShing & Scam Detector (Choose Text or Screenshot)")
with gr.Row():
input_type = gr.Radio(
choices=["Text", "Screenshot"],
value="Text",
label="Choose Input Type"
)
text_input = gr.Textbox(
lines=3,
label="Paste Suspicious SMS Text",
placeholder="Type or paste the message here...",
visible=True # default
)
image_input = gr.Image(
type="pil",
label="Upload Screenshot",
visible=False # hidden by default
)
# Whenever input_type changes, toggle which input is visible
input_type.change(
fn=toggle_inputs,
inputs=input_type,
outputs=[text_input, image_input],
queue=False
)
# Button to run classification
analyze_btn = gr.Button("Classify")
output_json = gr.JSON(label="Result")
# On button click, call the smishing_detector
analyze_btn.click(
fn=smishing_detector,
inputs=[input_type, text_input, image_input],
outputs=output_json
)
if __name__ == "__main__":
demo.launch()