File size: 9,635 Bytes
7169f21 07e1348 65494f9 7169f21 07e1348 7169f21 07e1348 7169f21 07e1348 7169f21 07e1348 d5030c9 07e1348 d5030c9 7169f21 d5030c9 07e1348 d5030c9 7169f21 d5030c9 07e1348 d5030c9 7169f21 65494f9 7169f21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
import gradio as gr
import pytesseract
from PIL import Image
from transformers import pipeline
import re
from langdetect import detect
from deep_translator import GoogleTranslator
import openai
import os
import requests
import json
# Set your OpenAI API key
openai.api_key = os.getenv("OPENAI_API_KEY")
# Retrieve Google Safe Browsing API key from environment
SAFE_BROWSING_API_KEY = os.getenv("GOOGLE_SAFE_BROWSING_API_KEY")
SAFE_BROWSING_URL = "https://safebrowsing.googleapis.com/v4/threatMatches:find"
# Translator instance
translator = GoogleTranslator(source="auto", target="es")
# 1. Load separate keywords for SMiShing and Other Scam (assumed in English)
with open("smishing_keywords.txt", "r", encoding="utf-8") as f:
SMISHING_KEYWORDS = [line.strip().lower() for line in f if line.strip()]
with open("other_scam_keywords.txt", "r", encoding="utf-8") as f:
OTHER_SCAM_KEYWORDS = [line.strip().lower() for line in f if line.strip()]
# 2. Zero-Shot Classification Pipeline
model_name = "joeddav/xlm-roberta-large-xnli"
classifier = pipeline("zero-shot-classification", model=model_name)
CANDIDATE_LABELS = ["SMiShing", "Other Scam", "Legitimate"]
def check_urls_with_google_safebrowsing(urls):
"""
Debug-enabled version of Google Safe Browsing check:
- Prints payload and response to help troubleshoot issues.
Returns a dict {url: bool is_malicious}.
If the API key is missing or error occurs, returns {url: False}.
"""
result = {}
if not SAFE_BROWSING_API_KEY:
print("No GOOGLE_SAFE_BROWSING_API_KEY found. Returning all URLs as safe.")
for u in urls:
result[u] = False
return result
threat_entries = [{"url": u} for u in urls]
payload = {
"client": {
"clientId": "my-smishing-detector",
"clientVersion": "1.0"
},
"threatInfo": {
"threatTypes": [
"MALWARE",
"SOCIAL_ENGINEERING",
"UNWANTED_SOFTWARE",
"POTENTIALLY_HARMFUL_APPLICATION"
],
"platformTypes": ["ANY_PLATFORM"],
"threatEntryTypes": ["URL"],
"threatEntries": threat_entries
}
}
print("---- Safe Browsing Debug ----")
print("REQUEST Endpoint:", SAFE_BROWSING_URL)
print("API Key:", SAFE_BROWSING_API_KEY)
print("REQUEST Payload (JSON):")
print(json.dumps(payload, indent=2))
try:
resp = requests.post(
SAFE_BROWSING_URL,
params={"key": SAFE_BROWSING_API_KEY},
json=payload,
timeout=10
)
print("RESPONSE Status Code:", resp.status_code)
try:
data = resp.json()
print("RESPONSE JSON:")
print(json.dumps(data, indent=2))
except Exception as parse_err:
print("Error parsing response as JSON:", parse_err)
data = {}
malicious_urls = set()
if "matches" in data:
for match in data["matches"]:
threat_url = match.get("threat", {}).get("url")
if threat_url:
malicious_urls.add(threat_url)
for u in urls:
result[u] = (u in malicious_urls)
except Exception as e:
print(f"Error contacting Safe Browsing API: {e}")
for u in urls:
result[u] = False
print("RESULTS (url -> malicious):", result)
print("---- End Debug ----\n")
return result
def get_keywords_by_language(text: str):
"""
Detect language using langdetect and translate keywords if needed.
"""
snippet = text[:200]
try:
detected_lang = detect(snippet)
except Exception:
detected_lang = "en"
if detected_lang == "es":
smishing_in_spanish = [
translator.translate(kw).lower() for kw in SMISHING_KEYWORDS
]
other_scam_in_spanish = [
translator.translate(kw).lower() for kw in OTHER_SCAM_KEYWORDS
]
return smishing_in_spanish, other_scam_in_spanish, "es"
else:
return SMISHING_KEYWORDS, OTHER_SCAM_KEYWORDS, "en"
def boost_probabilities(probabilities: dict, text: str):
"""
Boost probabilities based on keyword matches, presence of URLs,
and Google Safe Browsing checks.
"""
lower_text = text.lower()
smishing_keywords, other_scam_keywords, detected_lang = get_keywords_by_language(text)
smishing_count = sum(1 for kw in smishing_keywords if kw in lower_text)
other_scam_count = sum(1 for kw in other_scam_keywords if kw in lower_text)
smishing_boost = 0.30 * smishing_count
other_scam_boost = 0.30 * other_scam_count
# More robust URL pattern
found_urls = re.findall(
r"(https?://[^\s]+|\b[a-zA-Z0-9.-]+\.(?:com|net|org|edu|gov|mil|io|ai|co|info|biz|us|uk|de|fr|es|ru|jp|cn|in|au|ca|br|mx|it|nl|se|no|fi|ch|pl|kr|vn|id|tw|sg|hk)\b)",
lower_text
)
if found_urls:
smishing_boost += 0.35
p_smishing = probabilities.get("SMiShing", 0.0)
p_other_scam = probabilities.get("Other Scam", 0.0)
p_legit = probabilities.get("Legitimate", 1.0)
p_smishing += smishing_boost
p_other_scam += other_scam_boost
p_legit -= (smishing_boost + other_scam_boost)
# Preliminary clamp & normalization
p_smishing = max(p_smishing, 0.0)
p_other_scam = max(p_other_scam, 0.0)
p_legit = max(p_legit, 0.0)
total = p_smishing + p_other_scam + p_legit
if total > 0:
p_smishing /= total
p_other_scam /= total
p_legit /= total
else:
p_smishing, p_other_scam, p_legit = 0.0, 0.0, 1.0
# **Now** check Safe Browsing (with debug prints)
sb_results = {}
if found_urls:
sb_results = check_urls_with_google_safebrowsing(found_urls)
# If any malicious => set p_smishing=1.0
if any(sb_results[u] for u in sb_results):
p_smishing = 1.0
p_other_scam = 0.0
p_legit = 0.0
return {
"SMiShing": p_smishing,
"Other Scam": p_other_scam,
"Legitimate": p_legit,
"detected_lang": detected_lang,
"found_urls": found_urls,
"safe_browsing_results": sb_results
}
def smishing_detector(input_type, text, image):
"""
Main detection function combining text (if 'Text') & OCR (if 'Screenshot'),
and debugging logs for Safe Browsing calls.
"""
if input_type == "Text":
combined_text = text.strip() if text else ""
else:
combined_text = ""
if image is not None:
combined_text = pytesseract.image_to_string(image, lang="spa+eng").strip()
if not combined_text:
return {
"text_used_for_classification": "(none)",
"label": "No text provided",
"confidence": 0.0,
"keywords_found": [],
"urls_found": [],
"safe_browsing_results": {},
}
# 1. Local zero-shot classification
local_result = classifier(
sequences=combined_text,
candidate_labels=CANDIDATE_LABELS,
hypothesis_template="This message is {}."
)
original_probs = {k: float(v) for k, v in zip(local_result["labels"], local_result["scores"])}
# 2. Boost with keywords, URLs, and Safe Browsing checks
boosted_dict = boost_probabilities(original_probs, combined_text)
detected_lang = boosted_dict.pop("detected_lang", "en")
sb_results = boosted_dict.pop("safe_browsing_results", {})
found_urls = boosted_dict.pop("found_urls", [])
for k in boosted_dict:
boosted_dict[k] = float(boosted_dict[k])
final_label = max(boosted_dict, key=boosted_dict.get)
final_confidence = round(boosted_dict[final_label], 3)
return {
"detected_language": detected_lang,
"text_used_for_classification": combined_text,
"original_probabilities": {k: round(v, 3) for k, v in original_probs.items()},
"boosted_probabilities": {k: round(v, 3) for k, v in boosted_dict.items()},
"label": final_label,
"confidence": final_confidence,
"urls_found": found_urls,
"safe_browsing_results": sb_results
}
#
# Gradio interface with dynamic visibility
#
def toggle_inputs(choice):
if choice == "Text":
return gr.update(visible=True), gr.update(visible=False)
else:
return gr.update(visible=False), gr.update(visible=True)
with gr.Blocks() as demo:
gr.Markdown("## SMiShing & Scam Detector with Debug-Enabled Safe Browsing")
with gr.Row():
input_type = gr.Radio(
choices=["Text", "Screenshot"],
value="Text",
label="Choose Input Type"
)
text_input = gr.Textbox(
lines=3,
label="Paste Suspicious SMS Text",
placeholder="Type or paste the message here...",
visible=True
)
image_input = gr.Image(
type="pil",
label="Upload Screenshot",
visible=False
)
input_type.change(
fn=toggle_inputs,
inputs=input_type,
outputs=[text_input, image_input],
queue=False
)
analyze_btn = gr.Button("Classify")
output_json = gr.JSON(label="Result")
analyze_btn.click(
fn=smishing_detector,
inputs=[input_type, text_input, image_input],
outputs=output_json
)
if __name__ == "__main__":
if not openai.api_key:
print("WARNING: OPENAI_API_KEY not set. LLM calls may fail.")
if not SAFE_BROWSING_API_KEY:
print("WARNING: GOOGLE_SAFE_BROWSING_API_KEY not set. All URLs returned as safe.")
demo.launch() |