File size: 571 Bytes
bf2b5e4
 
 
 
2309e11
bf2b5e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import gradio as gr
from transformers import pipeline
import numpy as np

transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-tiny.en", generate_kwargs={"temperature": 1.0})

def transcribe(audio):
    sr, y = audio
    
    # Convert to mono if stereo
    if y.ndim > 1:
        y = y.mean(axis=1)
        
    y = y.astype(np.float32)
    y /= np.max(np.abs(y))

    return transcriber({"sampling_rate": sr, "raw": y})["text"]  

demo = gr.Interface(
    transcribe,
    gr.Audio(sources="microphone"),
    "text",
)

demo.launch(share=True)