aliabd HF Staff commited on
Commit
27b2e81
·
1 Parent(s): 78d3930

Upload folder using huggingface_hub

Browse files
Files changed (4) hide show
  1. README.md +6 -7
  2. requirements.txt +3 -0
  3. run.ipynb +1 -0
  4. run.py +69 -0
README.md CHANGED
@@ -1,12 +1,11 @@
 
1
  ---
2
- title: Scatter Plot Main
3
- emoji: 🐠
4
- colorFrom: red
5
- colorTo: yellow
6
  sdk: gradio
7
  sdk_version: 3.35.2
8
- app_file: app.py
9
  pinned: false
10
  ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
+
2
  ---
3
+ title: scatter_plot_main
4
+ emoji: 🔥
5
+ colorFrom: indigo
6
+ colorTo: indigo
7
  sdk: gradio
8
  sdk_version: 3.35.2
9
+ app_file: run.py
10
  pinned: false
11
  ---
 
 
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ vega_datasets
2
+ pandas
3
+ https://gradio-main-build.s3.amazonaws.com/44c766bd1a19e6c9195aed298ee6423c5e0116e3/gradio-3.35.2-py3-none-any.whl
run.ipynb ADDED
@@ -0,0 +1 @@
 
 
1
+ {"cells": [{"cell_type": "markdown", "id": 302934307671667531413257853548643485645, "metadata": {}, "source": ["# Gradio Demo: scatter_plot"]}, {"cell_type": "code", "execution_count": null, "id": 272996653310673477252411125948039410165, "metadata": {}, "outputs": [], "source": ["!pip install -q gradio vega_datasets pandas"]}, {"cell_type": "code", "execution_count": null, "id": 288918539441861185822528903084949547379, "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "from vega_datasets import data\n", "\n", "cars = data.cars()\n", "iris = data.iris()\n", "\n", "# # Or generate your own fake data\n", "\n", "# import pandas as pd\n", "# import random\n", "\n", "# cars_data = {\n", "# \"Name\": [\"car name \" + f\" {int(i/10)}\" for i in range(400)],\n", "# \"Miles_per_Gallon\": [random.randint(10, 30) for _ in range(400)],\n", "# \"Origin\": [random.choice([\"USA\", \"Europe\", \"Japan\"]) for _ in range(400)],\n", "# \"Horsepower\": [random.randint(50, 250) for _ in range(400)],\n", "# }\n", "\n", "# iris_data = {\n", "# \"petalWidth\": [round(random.uniform(0, 2.5), 2) for _ in range(150)],\n", "# \"petalLength\": [round(random.uniform(0, 7), 2) for _ in range(150)],\n", "# \"species\": [\n", "# random.choice([\"setosa\", \"versicolor\", \"virginica\"]) for _ in range(150)\n", "# ],\n", "# }\n", "\n", "# cars = pd.DataFrame(cars_data)\n", "# iris = pd.DataFrame(iris_data)\n", "\n", "\n", "def scatter_plot_fn(dataset):\n", " if dataset == \"iris\":\n", " return gr.ScatterPlot.update(\n", " value=iris,\n", " x=\"petalWidth\",\n", " y=\"petalLength\",\n", " color=\"species\",\n", " title=\"Iris Dataset\",\n", " color_legend_title=\"Species\",\n", " x_title=\"Petal Width\",\n", " y_title=\"Petal Length\",\n", " tooltip=[\"petalWidth\", \"petalLength\", \"species\"],\n", " caption=\"\",\n", " )\n", " else:\n", " return gr.ScatterPlot.update(\n", " value=cars,\n", " x=\"Horsepower\",\n", " y=\"Miles_per_Gallon\",\n", " color=\"Origin\",\n", " tooltip=\"Name\",\n", " title=\"Car Data\",\n", " y_title=\"Miles per Gallon\",\n", " color_legend_title=\"Origin of Car\",\n", " caption=\"MPG vs Horsepower of various cars\",\n", " )\n", "\n", "\n", "with gr.Blocks() as scatter_plot:\n", " with gr.Row():\n", " with gr.Column():\n", " dataset = gr.Dropdown(choices=[\"cars\", \"iris\"], value=\"cars\")\n", " with gr.Column():\n", " plot = gr.ScatterPlot()\n", " dataset.change(scatter_plot_fn, inputs=dataset, outputs=plot)\n", " scatter_plot.load(fn=scatter_plot_fn, inputs=dataset, outputs=plot)\n", "\n", "if __name__ == \"__main__\":\n", " scatter_plot.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
run.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from vega_datasets import data
3
+
4
+ cars = data.cars()
5
+ iris = data.iris()
6
+
7
+ # # Or generate your own fake data
8
+
9
+ # import pandas as pd
10
+ # import random
11
+
12
+ # cars_data = {
13
+ # "Name": ["car name " + f" {int(i/10)}" for i in range(400)],
14
+ # "Miles_per_Gallon": [random.randint(10, 30) for _ in range(400)],
15
+ # "Origin": [random.choice(["USA", "Europe", "Japan"]) for _ in range(400)],
16
+ # "Horsepower": [random.randint(50, 250) for _ in range(400)],
17
+ # }
18
+
19
+ # iris_data = {
20
+ # "petalWidth": [round(random.uniform(0, 2.5), 2) for _ in range(150)],
21
+ # "petalLength": [round(random.uniform(0, 7), 2) for _ in range(150)],
22
+ # "species": [
23
+ # random.choice(["setosa", "versicolor", "virginica"]) for _ in range(150)
24
+ # ],
25
+ # }
26
+
27
+ # cars = pd.DataFrame(cars_data)
28
+ # iris = pd.DataFrame(iris_data)
29
+
30
+
31
+ def scatter_plot_fn(dataset):
32
+ if dataset == "iris":
33
+ return gr.ScatterPlot.update(
34
+ value=iris,
35
+ x="petalWidth",
36
+ y="petalLength",
37
+ color="species",
38
+ title="Iris Dataset",
39
+ color_legend_title="Species",
40
+ x_title="Petal Width",
41
+ y_title="Petal Length",
42
+ tooltip=["petalWidth", "petalLength", "species"],
43
+ caption="",
44
+ )
45
+ else:
46
+ return gr.ScatterPlot.update(
47
+ value=cars,
48
+ x="Horsepower",
49
+ y="Miles_per_Gallon",
50
+ color="Origin",
51
+ tooltip="Name",
52
+ title="Car Data",
53
+ y_title="Miles per Gallon",
54
+ color_legend_title="Origin of Car",
55
+ caption="MPG vs Horsepower of various cars",
56
+ )
57
+
58
+
59
+ with gr.Blocks() as scatter_plot:
60
+ with gr.Row():
61
+ with gr.Column():
62
+ dataset = gr.Dropdown(choices=["cars", "iris"], value="cars")
63
+ with gr.Column():
64
+ plot = gr.ScatterPlot()
65
+ dataset.change(scatter_plot_fn, inputs=dataset, outputs=plot)
66
+ scatter_plot.load(fn=scatter_plot_fn, inputs=dataset, outputs=plot)
67
+
68
+ if __name__ == "__main__":
69
+ scatter_plot.launch()