Spaces:
Running
Running
Upload folder using huggingface_hub
Browse files
README.md
CHANGED
@@ -1,12 +1,11 @@
|
|
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.35.2
|
8 |
-
app_file:
|
9 |
pinned: false
|
10 |
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
+
|
2 |
---
|
3 |
+
title: scatter_plot_main
|
4 |
+
emoji: 🔥
|
5 |
+
colorFrom: indigo
|
6 |
+
colorTo: indigo
|
7 |
sdk: gradio
|
8 |
sdk_version: 3.35.2
|
9 |
+
app_file: run.py
|
10 |
pinned: false
|
11 |
---
|
|
|
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
vega_datasets
|
2 |
+
pandas
|
3 |
+
https://gradio-main-build.s3.amazonaws.com/44c766bd1a19e6c9195aed298ee6423c5e0116e3/gradio-3.35.2-py3-none-any.whl
|
run.ipynb
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"cells": [{"cell_type": "markdown", "id": 302934307671667531413257853548643485645, "metadata": {}, "source": ["# Gradio Demo: scatter_plot"]}, {"cell_type": "code", "execution_count": null, "id": 272996653310673477252411125948039410165, "metadata": {}, "outputs": [], "source": ["!pip install -q gradio vega_datasets pandas"]}, {"cell_type": "code", "execution_count": null, "id": 288918539441861185822528903084949547379, "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "from vega_datasets import data\n", "\n", "cars = data.cars()\n", "iris = data.iris()\n", "\n", "# # Or generate your own fake data\n", "\n", "# import pandas as pd\n", "# import random\n", "\n", "# cars_data = {\n", "# \"Name\": [\"car name \" + f\" {int(i/10)}\" for i in range(400)],\n", "# \"Miles_per_Gallon\": [random.randint(10, 30) for _ in range(400)],\n", "# \"Origin\": [random.choice([\"USA\", \"Europe\", \"Japan\"]) for _ in range(400)],\n", "# \"Horsepower\": [random.randint(50, 250) for _ in range(400)],\n", "# }\n", "\n", "# iris_data = {\n", "# \"petalWidth\": [round(random.uniform(0, 2.5), 2) for _ in range(150)],\n", "# \"petalLength\": [round(random.uniform(0, 7), 2) for _ in range(150)],\n", "# \"species\": [\n", "# random.choice([\"setosa\", \"versicolor\", \"virginica\"]) for _ in range(150)\n", "# ],\n", "# }\n", "\n", "# cars = pd.DataFrame(cars_data)\n", "# iris = pd.DataFrame(iris_data)\n", "\n", "\n", "def scatter_plot_fn(dataset):\n", " if dataset == \"iris\":\n", " return gr.ScatterPlot.update(\n", " value=iris,\n", " x=\"petalWidth\",\n", " y=\"petalLength\",\n", " color=\"species\",\n", " title=\"Iris Dataset\",\n", " color_legend_title=\"Species\",\n", " x_title=\"Petal Width\",\n", " y_title=\"Petal Length\",\n", " tooltip=[\"petalWidth\", \"petalLength\", \"species\"],\n", " caption=\"\",\n", " )\n", " else:\n", " return gr.ScatterPlot.update(\n", " value=cars,\n", " x=\"Horsepower\",\n", " y=\"Miles_per_Gallon\",\n", " color=\"Origin\",\n", " tooltip=\"Name\",\n", " title=\"Car Data\",\n", " y_title=\"Miles per Gallon\",\n", " color_legend_title=\"Origin of Car\",\n", " caption=\"MPG vs Horsepower of various cars\",\n", " )\n", "\n", "\n", "with gr.Blocks() as scatter_plot:\n", " with gr.Row():\n", " with gr.Column():\n", " dataset = gr.Dropdown(choices=[\"cars\", \"iris\"], value=\"cars\")\n", " with gr.Column():\n", " plot = gr.ScatterPlot()\n", " dataset.change(scatter_plot_fn, inputs=dataset, outputs=plot)\n", " scatter_plot.load(fn=scatter_plot_fn, inputs=dataset, outputs=plot)\n", "\n", "if __name__ == \"__main__\":\n", " scatter_plot.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
run.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from vega_datasets import data
|
3 |
+
|
4 |
+
cars = data.cars()
|
5 |
+
iris = data.iris()
|
6 |
+
|
7 |
+
# # Or generate your own fake data
|
8 |
+
|
9 |
+
# import pandas as pd
|
10 |
+
# import random
|
11 |
+
|
12 |
+
# cars_data = {
|
13 |
+
# "Name": ["car name " + f" {int(i/10)}" for i in range(400)],
|
14 |
+
# "Miles_per_Gallon": [random.randint(10, 30) for _ in range(400)],
|
15 |
+
# "Origin": [random.choice(["USA", "Europe", "Japan"]) for _ in range(400)],
|
16 |
+
# "Horsepower": [random.randint(50, 250) for _ in range(400)],
|
17 |
+
# }
|
18 |
+
|
19 |
+
# iris_data = {
|
20 |
+
# "petalWidth": [round(random.uniform(0, 2.5), 2) for _ in range(150)],
|
21 |
+
# "petalLength": [round(random.uniform(0, 7), 2) for _ in range(150)],
|
22 |
+
# "species": [
|
23 |
+
# random.choice(["setosa", "versicolor", "virginica"]) for _ in range(150)
|
24 |
+
# ],
|
25 |
+
# }
|
26 |
+
|
27 |
+
# cars = pd.DataFrame(cars_data)
|
28 |
+
# iris = pd.DataFrame(iris_data)
|
29 |
+
|
30 |
+
|
31 |
+
def scatter_plot_fn(dataset):
|
32 |
+
if dataset == "iris":
|
33 |
+
return gr.ScatterPlot.update(
|
34 |
+
value=iris,
|
35 |
+
x="petalWidth",
|
36 |
+
y="petalLength",
|
37 |
+
color="species",
|
38 |
+
title="Iris Dataset",
|
39 |
+
color_legend_title="Species",
|
40 |
+
x_title="Petal Width",
|
41 |
+
y_title="Petal Length",
|
42 |
+
tooltip=["petalWidth", "petalLength", "species"],
|
43 |
+
caption="",
|
44 |
+
)
|
45 |
+
else:
|
46 |
+
return gr.ScatterPlot.update(
|
47 |
+
value=cars,
|
48 |
+
x="Horsepower",
|
49 |
+
y="Miles_per_Gallon",
|
50 |
+
color="Origin",
|
51 |
+
tooltip="Name",
|
52 |
+
title="Car Data",
|
53 |
+
y_title="Miles per Gallon",
|
54 |
+
color_legend_title="Origin of Car",
|
55 |
+
caption="MPG vs Horsepower of various cars",
|
56 |
+
)
|
57 |
+
|
58 |
+
|
59 |
+
with gr.Blocks() as scatter_plot:
|
60 |
+
with gr.Row():
|
61 |
+
with gr.Column():
|
62 |
+
dataset = gr.Dropdown(choices=["cars", "iris"], value="cars")
|
63 |
+
with gr.Column():
|
64 |
+
plot = gr.ScatterPlot()
|
65 |
+
dataset.change(scatter_plot_fn, inputs=dataset, outputs=plot)
|
66 |
+
scatter_plot.load(fn=scatter_plot_fn, inputs=dataset, outputs=plot)
|
67 |
+
|
68 |
+
if __name__ == "__main__":
|
69 |
+
scatter_plot.launch()
|