gnaw05 commited on
Commit
ce9dc81
·
verified ·
1 Parent(s): b2fb02e
Files changed (1) hide show
  1. app.py +11 -19
app.py CHANGED
@@ -6,7 +6,7 @@ import docx2txt
6
  from sklearn.feature_extraction.text import TfidfVectorizer
7
  from sklearn.metrics.pairwise import cosine_similarity
8
  import difflib
9
- from huggingface_hub import InferenceApi # Import Hugging Face API
10
 
11
  # ========== CONFIG ==========
12
  st.set_page_config(page_title="📑 Contract Analyzer", layout="wide")
@@ -15,10 +15,10 @@ st.set_page_config(page_title="📑 Contract Analyzer", layout="wide")
15
 
16
  # Tải mô hình Hugging Face từ Hub
17
  @st.cache_resource
18
- def load_inference_api():
19
- return InferenceApi(repo_id="HuggingFaceH4/zephyr-7b-beta") # Mô hình Zephyr
20
 
21
- inference_api = load_inference_api()
22
 
23
  def extract_text_from_pdf(uploaded_file):
24
  try:
@@ -78,7 +78,7 @@ def compute_similarity(text1, text2):
78
  def query_zephyr_model(text1, text2, question):
79
  prompt = f"Compare the following two contracts and answer the question:\nText 1: {text1}\nText 2: {text2}\nQuestion: {question}"
80
  try:
81
- result = inference_api(inputs=prompt)
82
  return result['generated_text']
83
  except Exception as e:
84
  st.error(f"Error querying the model: {e}")
@@ -129,24 +129,16 @@ def main():
129
  user_question = st.text_input("Enter your question about the contracts:")
130
 
131
  if user_question and st.button("Analyze Question"):
132
- col1, col2 = st.columns(2)
133
- with col1:
134
- st.subheader("Answer from Document 1")
135
- with st.spinner("Analyzing..."):
136
- try:
137
- pred1 = query_zephyr_model(text1, text2, user_question)
138
- st.success(pred1)
139
- except Exception as e:
140
- st.error(f"Failed on Document 1: {e}")
141
 
142
- with col2:
143
- st.subheader("Answer from Document 2")
144
  with st.spinner("Analyzing..."):
145
  try:
146
- pred2 = query_zephyr_model(text1, text2, user_question)
147
- st.success(pred2)
148
  except Exception as e:
149
- st.error(f"Failed on Document 2: {e}")
150
 
151
  if __name__ == "__main__":
152
  main()
 
6
  from sklearn.feature_extraction.text import TfidfVectorizer
7
  from sklearn.metrics.pairwise import cosine_similarity
8
  import difflib
9
+ from huggingface_hub import InferenceClient # Import Hugging Face API
10
 
11
  # ========== CONFIG ==========
12
  st.set_page_config(page_title="📑 Contract Analyzer", layout="wide")
 
15
 
16
  # Tải mô hình Hugging Face từ Hub
17
  @st.cache_resource
18
+ def load_inference_client():
19
+ return InferenceClient(repo_id="HuggingFaceH4/zephyr-7b-beta") # Mô hình Zephyr
20
 
21
+ inference_client = load_inference_client()
22
 
23
  def extract_text_from_pdf(uploaded_file):
24
  try:
 
78
  def query_zephyr_model(text1, text2, question):
79
  prompt = f"Compare the following two contracts and answer the question:\nText 1: {text1}\nText 2: {text2}\nQuestion: {question}"
80
  try:
81
+ result = inference_client(inputs=prompt)
82
  return result['generated_text']
83
  except Exception as e:
84
  st.error(f"Error querying the model: {e}")
 
129
  user_question = st.text_input("Enter your question about the contracts:")
130
 
131
  if user_question and st.button("Analyze Question"):
132
+ col = st.columns(1)
 
 
 
 
 
 
 
 
133
 
134
+ with col:
135
+ st.subheader("Answer from Document")
136
  with st.spinner("Analyzing..."):
137
  try:
138
+ pred = query_zephyr_model(text1, text2, user_question)
139
+ st.success(pred)
140
  except Exception as e:
141
+ st.error(f"Failed on Document: {e}")
142
 
143
  if __name__ == "__main__":
144
  main()