Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,893 +1,26 @@
|
|
1 |
-
# ββββββββββββββββββββββββββββββββ Imports ββββββββββββββββββββββββββββββββ
|
2 |
-
import os, json, re, logging, requests, markdown, time, io
|
3 |
-
from datetime import datetime
|
4 |
-
|
5 |
import streamlit as st
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
import pandas as pd
|
10 |
-
import PyPDF2 # For handling PDF files
|
11 |
-
|
12 |
-
# ββββββββββββββββββββββββββββββββ Environment Variables / Constants βββββββββββββββββββββββββ
|
13 |
-
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", "")
|
14 |
-
BRAVE_KEY = os.getenv("SERPHOUSE_API_KEY", "") # Keep this name
|
15 |
-
BRAVE_ENDPOINT = "https://api.search.brave.com/res/v1/web/search"
|
16 |
-
IMAGE_API_URL = "http://211.233.58.201:7896"
|
17 |
-
MAX_TOKENS = 7999
|
18 |
-
|
19 |
-
# Blog template and style definitions (in English)
|
20 |
-
BLOG_TEMPLATES = {
|
21 |
-
"ginigen": "Recommended style by Ginigen",
|
22 |
-
"standard": "Standard 8-step framework blog",
|
23 |
-
"tutorial": "Step-by-step tutorial format",
|
24 |
-
"review": "Product/service review format",
|
25 |
-
"storytelling": "Storytelling format",
|
26 |
-
"seo_optimized": "SEO-optimized blog"
|
27 |
-
}
|
28 |
-
|
29 |
-
BLOG_TONES = {
|
30 |
-
"professional": "Professional and formal tone",
|
31 |
-
"casual": "Friendly and conversational tone",
|
32 |
-
"humorous": "Humorous approach",
|
33 |
-
"storytelling": "Story-driven approach"
|
34 |
-
}
|
35 |
-
|
36 |
-
# Example blog topics
|
37 |
-
EXAMPLE_TOPICS = {
|
38 |
-
"example1": "Changes to the real estate tax system in 2025: Impact on average households and tax-saving strategies",
|
39 |
-
"example2": "Summer festivals in 2025: A comprehensive guide to major regional events and hidden attractions",
|
40 |
-
"example3": "Emerging industries to watch in 2025: An investment guide focused on AI opportunities"
|
41 |
-
}
|
42 |
-
|
43 |
-
# ββββββββββββββββββββββββββββββββ Logging ββββββββββββββββββββββββββββββββ
|
44 |
-
logging.basicConfig(level=logging.INFO,
|
45 |
-
format="%(asctime)s - %(levelname)s - %(message)s")
|
46 |
-
|
47 |
-
# ββββββββββββββββββββββββββββββββ OpenAI Client ββββββββββββββββββββββββββ
|
48 |
-
|
49 |
-
# OpenAI ν΄λΌμ΄μΈνΈμ νμμμκ³Ό μ¬μλ λ‘μ§ μΆκ°
|
50 |
-
@st.cache_resource
|
51 |
-
def get_openai_client():
|
52 |
-
"""Create an OpenAI client with timeout and retry settings."""
|
53 |
-
if not OPENAI_API_KEY:
|
54 |
-
raise RuntimeError("β οΈ OPENAI_API_KEY νκ²½ λ³μκ° μ€μ λμ§ μμμ΅λλ€.")
|
55 |
-
return OpenAI(
|
56 |
-
api_key=OPENAI_API_KEY,
|
57 |
-
timeout=60.0, # νμμμ 60μ΄λ‘ μ€μ
|
58 |
-
max_retries=3 # μ¬μλ νμ 3νλ‘ μ€μ
|
59 |
-
)
|
60 |
-
|
61 |
-
# ββββββββββββββββββββββββββββββββ Blog Creation System Prompt βββββββββββββ
|
62 |
-
def get_system_prompt(template="ginigen", tone="professional", word_count=1750, include_search_results=False, include_uploaded_files=False) -> str:
|
63 |
-
"""
|
64 |
-
Generate a system prompt that includes:
|
65 |
-
- The 8-step blog writing framework
|
66 |
-
- The selected template and tone
|
67 |
-
- Guidelines for using web search results and uploaded files
|
68 |
-
"""
|
69 |
-
|
70 |
-
# Ginigen recommended style prompt (English version)
|
71 |
-
ginigen_prompt = """
|
72 |
-
You are an expert English SEO copywriter.
|
73 |
-
β Purpose
|
74 |
-
- Create a blog post based on the given YouTube video script that captivates both search engines and readers.
|
75 |
-
- Always follow the 4 writing principles: **[Lead with the main point β Keep it simple and short β Emphasize reader benefits β Call to action]**.
|
76 |
-
β Complete Format (Use markdown, avoid unnecessary explanations)
|
77 |
-
1. **Title**
|
78 |
-
- Emoji + Curiosity question/exclamation + Core keywords (Within 70 characters)
|
79 |
-
- Example: `# 𧬠Can Reducing Inflammation Help You Lose Weight?! 5 Amazing Benefits of Quercetin`
|
80 |
-
2. **Hook (2-3 lines)**
|
81 |
-
- Present problem β Mention solution keyword β Summarize the benefit of reading this post
|
82 |
-
3. `---` Divider
|
83 |
-
4. **Section 1: Core Concept Introduction**
|
84 |
-
- `## π What is [Keyword]?`
|
85 |
-
- 1-2 paragraphs definition + π One-line summary
|
86 |
-
5. `---`
|
87 |
-
6. **Section 2: 5 Benefits/Reasons**
|
88 |
-
- `## πͺ 5 Reasons Why [Keyword] Is Beneficial`
|
89 |
-
- Each subsection format:
|
90 |
-
|
91 |
-
### 1. [Keyword-focused subheading]
|
92 |
-
1-2 paragraphs explanation
|
93 |
-
> β One-line key point emphasis
|
94 |
-
- Total of 5 items
|
95 |
-
7. **Section 3: Consumption/Usage Methods**
|
96 |
-
- `## π₯ How to Use [Keyword] Effectively!`
|
97 |
-
- Emoji bullet list of around 5 items + Additional tips
|
98 |
-
8. `---`
|
99 |
-
9. **Concluding Call to Action**
|
100 |
-
- `## π Conclusion β Start Using [Keyword] Today!`
|
101 |
-
- 2-3 sentences on benefits/changes β **Action directive** (purchase, subscribe, share, etc.)
|
102 |
-
10. `---`
|
103 |
-
11. **Key Summary Table**
|
104 |
-
| Item | Effect |
|
105 |
-
|---|---|
|
106 |
-
| [Keyword] | [Effect summary] |
|
107 |
-
| Key foods/products | [List] |
|
108 |
-
12. `---`
|
109 |
-
13. **Quiz & CTA**
|
110 |
-
- Simple Q&A quiz (1 question) β Reveal answer
|
111 |
-
- "If you found this helpful, please share/comment" phrase
|
112 |
-
- Preview of next post
|
113 |
-
β Additional Guidelines
|
114 |
-
- Total length 1,200-1,800 words.
|
115 |
-
- Use simple vocabulary and short sentences, enhance readability with emojis, bold text, and quoted sections.
|
116 |
-
- Increase credibility with specific numbers, research results, and analogies.
|
117 |
-
- No meta-mentions of "prompts" or "instructions".
|
118 |
-
- Use conversational but professional tone throughout.
|
119 |
-
- Minimize expressions like "according to research" if no external sources are provided.
|
120 |
-
β Output
|
121 |
-
- Return **only the completed blog post** in the above format. No additional text.
|
122 |
-
"""
|
123 |
-
|
124 |
-
# Standard 8-step framework (English version)
|
125 |
-
base_prompt = """
|
126 |
-
You are an expert in writing professional blog posts. For every blog writing request, strictly follow this 8-step framework to produce a coherent, engaging post:
|
127 |
-
|
128 |
-
Reader Connection Phase
|
129 |
-
1.1. Friendly greeting to build rapport
|
130 |
-
1.2. Reflect actual reader concerns through introductory questions
|
131 |
-
1.3. Stimulate immediate interest in the topic
|
132 |
-
|
133 |
-
Problem Definition Phase
|
134 |
-
2.1. Define the reader's pain points in detail
|
135 |
-
2.2. Analyze the urgency and impact of the problem
|
136 |
-
2.3. Build a consensus on why it needs to be solved
|
137 |
-
|
138 |
-
Establish Expertise Phase
|
139 |
-
3.1. Analyze based on objective data
|
140 |
-
3.2. Cite expert views and research findings
|
141 |
-
3.3. Use real-life examples to further clarify the issue
|
142 |
-
|
143 |
-
Solution Phase
|
144 |
-
4.1. Provide step-by-step guidance
|
145 |
-
4.2. Suggest practical tips that can be applied immediately
|
146 |
-
4.3. Mention potential obstacles and how to overcome them
|
147 |
-
|
148 |
-
Build Trust Phase
|
149 |
-
5.1. Present actual success stories
|
150 |
-
5.2. Quote real user feedback
|
151 |
-
5.3. Use objective data to prove effectiveness
|
152 |
-
|
153 |
-
Action Phase
|
154 |
-
6.1. Suggest the first clear step the reader can take
|
155 |
-
6.2. Urge timely action by emphasizing urgency
|
156 |
-
6.3. Motivate by highlighting incentives or benefits
|
157 |
-
|
158 |
-
Authenticity Phase
|
159 |
-
7.1. Transparently disclose any limits of the solution
|
160 |
-
7.2. Admit that individual experiences may vary
|
161 |
-
7.3. Mention prerequisites or cautionary points
|
162 |
-
|
163 |
-
Relationship Continuation Phase
|
164 |
-
8.1. Conclude with sincere gratitude
|
165 |
-
8.2. Preview upcoming content to build anticipation
|
166 |
-
8.3. Provide channels for further communication
|
167 |
-
"""
|
168 |
-
|
169 |
-
# Additional guidelines for each template
|
170 |
-
template_guides = {
|
171 |
-
"tutorial": """
|
172 |
-
This blog should be in a tutorial style:
|
173 |
-
- Clearly state the goal and the final outcome first
|
174 |
-
- Provide step-by-step explanations with clear separations
|
175 |
-
- Indicate where images could be inserted for each step
|
176 |
-
- Mention approximate time requirements and difficulty level
|
177 |
-
- List necessary tools or prerequisite knowledge
|
178 |
-
- Give troubleshooting tips and common mistakes to avoid
|
179 |
-
- Conclude with suggestions for next steps or advanced applications
|
180 |
-
""",
|
181 |
-
"review": """
|
182 |
-
This blog should be in a review style:
|
183 |
-
- Separate objective facts from subjective opinions
|
184 |
-
- Clearly list your evaluation criteria
|
185 |
-
- Discuss both pros and cons in a balanced way
|
186 |
-
- Compare with similar products/services
|
187 |
-
- Specify the target audience for whom it is suitable
|
188 |
-
- Provide concrete use cases and outcomes
|
189 |
-
- Conclude with a final recommendation or alternatives
|
190 |
-
""",
|
191 |
-
"storytelling": """
|
192 |
-
This blog should be in a storytelling style:
|
193 |
-
- Start with a real or hypothetical person or case
|
194 |
-
- Emphasize emotional connection with the problem scenario
|
195 |
-
- Follow a narrative structure centered on conflict and resolution
|
196 |
-
- Include meaningful insights or lessons learned
|
197 |
-
- Maintain an emotional thread the reader can relate to
|
198 |
-
- Balance storytelling with useful information
|
199 |
-
- Encourage the reader to reflect on their own story
|
200 |
-
""",
|
201 |
-
"seo_optimized": """
|
202 |
-
This blog should be SEO-optimized:
|
203 |
-
- Include the main keyword in the title, headings, and first paragraph
|
204 |
-
- Spread related keywords naturally throughout the text
|
205 |
-
- Keep paragraphs around 300-500 characters
|
206 |
-
- Use question-based subheadings
|
207 |
-
- Make use of lists, tables, and bold text to diversify formatting
|
208 |
-
- Indicate where internal links could be inserted
|
209 |
-
- Provide sufficient content of at least 2000-3000 characters
|
210 |
-
"""
|
211 |
-
}
|
212 |
-
|
213 |
-
# Additional guidelines for each tone
|
214 |
-
tone_guides = {
|
215 |
-
"professional": "Use a professional, authoritative voice. Clearly explain any technical terms and present data or research to maintain a logical flow.",
|
216 |
-
"casual": "Use a relaxed, conversational style. Employ personal experiences, relatable examples, and a friendly voice (e.g., 'It's super useful!').",
|
217 |
-
"humorous": "Use humor and witty expressions. Add funny analogies or jokes while preserving accuracy and usefulness.",
|
218 |
-
"storytelling": "Write as if telling a story, with emotional depth and narrative flow. Incorporate characters, settings, conflicts, and resolutions."
|
219 |
-
}
|
220 |
-
|
221 |
-
# Guidelines for using search results
|
222 |
-
search_guide = """
|
223 |
-
Guidelines for Using Search Results:
|
224 |
-
- Accurately incorporate key information from the search results into the blog
|
225 |
-
- Include recent data, statistics, and case studies from the search results
|
226 |
-
- When quoting, specify the source within the text (e.g., "According to XYZ website...")
|
227 |
-
- At the end of the blog, add a "References" section and list major sources with links
|
228 |
-
- If there are conflicting pieces of information, present multiple perspectives
|
229 |
-
- Make sure to reflect the latest trends and data from the search results
|
230 |
-
"""
|
231 |
-
|
232 |
-
# Guidelines for using uploaded files
|
233 |
-
upload_guide = """
|
234 |
-
Guidelines for Using Uploaded Files (Highest Priority):
|
235 |
-
- The uploaded files must be a main source of information for the blog
|
236 |
-
- Carefully examine the data, statistics, or examples in the file and integrate them
|
237 |
-
- Directly quote and thoroughly explain any key figures or claims from the file
|
238 |
-
- Highlight the file content as a crucial aspect of the blog
|
239 |
-
- Mention the source clearly, e.g., "According to the uploaded data..."
|
240 |
-
- For CSV files, detail important stats or numerical data in the blog
|
241 |
-
- For PDF files, quote crucial segments or statements
|
242 |
-
- For text files, integrate relevant content effectively
|
243 |
-
- Even if the file content seems tangential, do your best to connect it to the blog topic
|
244 |
-
- Keep consistency throughout and ensure the file's data is appropriately reflected
|
245 |
-
"""
|
246 |
-
|
247 |
-
# Choose base prompt
|
248 |
-
if template == "ginigen":
|
249 |
-
final_prompt = ginigen_prompt
|
250 |
-
else:
|
251 |
-
final_prompt = base_prompt
|
252 |
-
|
253 |
-
# If the user chose a specific template (and not ginigen), append the relevant guidelines
|
254 |
-
if template != "ginigen" and template in template_guides:
|
255 |
-
final_prompt += "\n" + template_guides[template]
|
256 |
-
|
257 |
-
# If a specific tone is selected, append that guideline
|
258 |
-
if tone in tone_guides:
|
259 |
-
final_prompt += f"\n\nTone and Manner: {tone_guides[tone]}"
|
260 |
|
261 |
-
|
262 |
-
|
263 |
-
final_prompt += f"\n\n{search_guide}"
|
264 |
|
265 |
-
|
266 |
-
|
267 |
-
final_prompt += f"\n\n{upload_guide}"
|
268 |
-
|
269 |
-
# Word count guidelines
|
270 |
-
final_prompt += (
|
271 |
-
f"\n\nWriting Requirements:\n"
|
272 |
-
f"9.1. Word Count: around {word_count-250}-{word_count+250} characters\n"
|
273 |
-
f"9.2. Paragraph Length: 3-4 sentences each\n"
|
274 |
-
f"9.3. Visual Cues: Use subheadings, separators, and bullet/numbered lists\n"
|
275 |
-
f"9.4. Data: Cite all sources\n"
|
276 |
-
f"9.5. Readability: Use clear paragraph breaks and highlights where necessary"
|
277 |
-
)
|
278 |
-
|
279 |
-
return final_prompt
|
280 |
-
|
281 |
-
# ββββββββββββββββββββββββββββββββ Brave Search API ββββββββββββββββββββββββ
|
282 |
-
@st.cache_data(ttl=3600)
|
283 |
-
def brave_search(query: str, count: int = 20):
|
284 |
-
"""
|
285 |
-
Call the Brave Web Search API β list[dict]
|
286 |
-
Returns fields: index, title, link, snippet, displayed_link
|
287 |
-
"""
|
288 |
-
if not BRAVE_KEY:
|
289 |
-
raise RuntimeError("β οΈ SERPHOUSE_API_KEY (Brave API Key) environment variable is empty.")
|
290 |
-
|
291 |
-
headers = {
|
292 |
-
"Accept": "application/json",
|
293 |
-
"Accept-Encoding": "gzip",
|
294 |
-
"X-Subscription-Token": BRAVE_KEY
|
295 |
-
}
|
296 |
-
params = {"q": query, "count": str(count)}
|
297 |
-
|
298 |
-
for attempt in range(3):
|
299 |
-
try:
|
300 |
-
r = requests.get(BRAVE_ENDPOINT, headers=headers, params=params, timeout=15)
|
301 |
-
r.raise_for_status()
|
302 |
-
data = r.json()
|
303 |
-
|
304 |
-
logging.info(f"Brave search result data structure: {list(data.keys())}")
|
305 |
-
|
306 |
-
raw = data.get("web", {}).get("results") or data.get("results", [])
|
307 |
-
if not raw:
|
308 |
-
logging.warning(f"No Brave search results found. Response: {data}")
|
309 |
-
raise ValueError("No search results found.")
|
310 |
-
|
311 |
-
arts = []
|
312 |
-
for i, res in enumerate(raw[:count], 1):
|
313 |
-
url = res.get("url", res.get("link", ""))
|
314 |
-
host = re.sub(r"https?://(www\.)?", "", url).split("/")[0]
|
315 |
-
arts.append({
|
316 |
-
"index": i,
|
317 |
-
"title": res.get("title", "No title"),
|
318 |
-
"link": url,
|
319 |
-
"snippet": res.get("description", res.get("text", "No snippet")),
|
320 |
-
"displayed_link": host
|
321 |
-
})
|
322 |
-
|
323 |
-
logging.info(f"Brave search success: {len(arts)} results")
|
324 |
-
return arts
|
325 |
-
|
326 |
-
except Exception as e:
|
327 |
-
logging.error(f"Brave search failure (attempt {attempt+1}/3): {e}")
|
328 |
-
if attempt < 2:
|
329 |
-
time.sleep(2)
|
330 |
-
|
331 |
-
return []
|
332 |
-
|
333 |
-
def mock_results(query: str) -> str:
|
334 |
-
"""Fallback search results if API fails"""
|
335 |
-
ts = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
336 |
-
return (f"# Fallback Search Content (Generated: {ts})\n\n"
|
337 |
-
f"The search API request failed. Please generate the blog based on any pre-existing knowledge about '{query}'.\n\n"
|
338 |
-
f"You may consider the following points:\n\n"
|
339 |
-
f"- Basic concepts and importance of {query}\n"
|
340 |
-
f"- Commonly known related statistics or trends\n"
|
341 |
-
f"- Typical expert opinions on this subject\n"
|
342 |
-
f"- Questions that readers might have\n\n"
|
343 |
-
f"Note: This is fallback guidance, not real-time data.\n\n")
|
344 |
-
|
345 |
-
def do_web_search(query: str) -> str:
|
346 |
-
"""Perform web search and format the results."""
|
347 |
try:
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
return mock_results(query)
|
352 |
-
|
353 |
-
hdr = "# Web Search Results\nUse the information below to enhance the reliability of your blog. When you quote, please cite the source, and add a References section at the end of the blog.\n\n"
|
354 |
-
body = "\n".join(
|
355 |
-
f"### Result {a['index']}: {a['title']}\n\n{a['snippet']}\n\n"
|
356 |
-
f"**Source**: [{a['displayed_link']}]({a['link']})\n\n---\n"
|
357 |
-
for a in arts
|
358 |
-
)
|
359 |
-
return hdr + body
|
360 |
-
except Exception as e:
|
361 |
-
logging.error(f"Web search process failed: {str(e)}")
|
362 |
-
return mock_results(query)
|
363 |
-
|
364 |
-
# ββββββββββββββββββββββββββββββββ File Upload Handling βββββββββββββββββββββ
|
365 |
-
def process_text_file(file):
|
366 |
-
"""Handle text file"""
|
367 |
-
try:
|
368 |
-
content = file.read()
|
369 |
-
file.seek(0)
|
370 |
-
|
371 |
-
text = content.decode('utf-8', errors='ignore')
|
372 |
-
if len(text) > 10000:
|
373 |
-
text = text[:9700] + "...(truncated)..."
|
374 |
-
|
375 |
-
result = f"## Text File: {file.name}\n\n"
|
376 |
-
result += text
|
377 |
-
return result
|
378 |
-
except Exception as e:
|
379 |
-
logging.error(f"Error processing text file: {str(e)}")
|
380 |
-
return f"Error processing text file: {str(e)}"
|
381 |
-
|
382 |
-
def process_csv_file(file):
|
383 |
-
"""Handle CSV file"""
|
384 |
-
try:
|
385 |
-
content = file.read()
|
386 |
-
file.seek(0)
|
387 |
-
|
388 |
-
df = pd.read_csv(io.BytesIO(content))
|
389 |
-
result = f"## CSV File: {file.name}\n\n"
|
390 |
-
result += f"- Rows: {len(df)}\n"
|
391 |
-
result += f"- Columns: {len(df.columns)}\n"
|
392 |
-
result += f"- Column Names: {', '.join(df.columns.tolist())}\n\n"
|
393 |
-
|
394 |
-
result += "### Data Preview\n\n"
|
395 |
-
preview_df = df.head(10)
|
396 |
-
try:
|
397 |
-
markdown_table = preview_df.to_markdown(index=False)
|
398 |
-
if markdown_table:
|
399 |
-
result += markdown_table + "\n\n"
|
400 |
-
else:
|
401 |
-
result += "Unable to display CSV data.\n\n"
|
402 |
-
except Exception as e:
|
403 |
-
logging.error(f"Markdown table conversion error: {e}")
|
404 |
-
result += "Displaying data as text:\n\n"
|
405 |
-
result += str(preview_df) + "\n\n"
|
406 |
-
|
407 |
-
num_cols = df.select_dtypes(include=['number']).columns
|
408 |
-
if len(num_cols) > 0:
|
409 |
-
result += "### Basic Statistical Information\n\n"
|
410 |
-
try:
|
411 |
-
stats_df = df[num_cols].describe().round(2)
|
412 |
-
stats_markdown = stats_df.to_markdown()
|
413 |
-
if stats_markdown:
|
414 |
-
result += stats_markdown + "\n\n"
|
415 |
-
else:
|
416 |
-
result += "Unable to display statistical information.\n\n"
|
417 |
-
except Exception as e:
|
418 |
-
logging.error(f"Statistical info conversion error: {e}")
|
419 |
-
result += "Unable to generate statistical information.\n\n"
|
420 |
-
|
421 |
-
return result
|
422 |
-
except Exception as e:
|
423 |
-
logging.error(f"CSV file processing error: {str(e)}")
|
424 |
-
return f"Error processing CSV file: {str(e)}"
|
425 |
-
|
426 |
-
def process_pdf_file(file):
|
427 |
-
"""Handle PDF file"""
|
428 |
-
try:
|
429 |
-
# Read file in bytes
|
430 |
-
file_bytes = file.read()
|
431 |
-
file.seek(0)
|
432 |
-
|
433 |
-
# Use PyPDF2
|
434 |
-
pdf_file = io.BytesIO(file_bytes)
|
435 |
-
reader = PyPDF2.PdfReader(pdf_file, strict=False)
|
436 |
-
|
437 |
-
# Basic info
|
438 |
-
result = f"## PDF File: {file.name}\n\n"
|
439 |
-
result += f"- Total pages: {len(reader.pages)}\n\n"
|
440 |
-
|
441 |
-
# Extract text by page (limit to first 5 pages)
|
442 |
-
max_pages = min(5, len(reader.pages))
|
443 |
-
all_text = ""
|
444 |
-
|
445 |
-
for i in range(max_pages):
|
446 |
-
try:
|
447 |
-
page = reader.pages[i]
|
448 |
-
page_text = page.extract_text()
|
449 |
-
|
450 |
-
current_page_text = f"### Page {i+1}\n\n"
|
451 |
-
if page_text and len(page_text.strip()) > 0:
|
452 |
-
# Limit to 1500 characters per page
|
453 |
-
if len(page_text) > 1500:
|
454 |
-
current_page_text += page_text[:1500] + "...(truncated)...\n\n"
|
455 |
-
else:
|
456 |
-
current_page_text += page_text + "\n\n"
|
457 |
-
else:
|
458 |
-
current_page_text += "(No text could be extracted from this page)\n\n"
|
459 |
-
|
460 |
-
all_text += current_page_text
|
461 |
-
|
462 |
-
# If total text is too long, break
|
463 |
-
if len(all_text) > 8000:
|
464 |
-
all_text += "...(truncating remaining pages; PDF is too large)...\n\n"
|
465 |
-
break
|
466 |
-
|
467 |
-
except Exception as page_err:
|
468 |
-
logging.error(f"Error processing PDF page {i+1}: {str(page_err)}")
|
469 |
-
all_text += f"### Page {i+1}\n\n(Error extracting content: {str(page_err)})\n\n"
|
470 |
-
|
471 |
-
if len(reader.pages) > max_pages:
|
472 |
-
all_text += f"\nNote: Only the first {max_pages} pages are shown out of {len(reader.pages)} total.\n\n"
|
473 |
-
|
474 |
-
result += "### PDF Content\n\n" + all_text
|
475 |
-
return result
|
476 |
-
|
477 |
-
except Exception as e:
|
478 |
-
logging.error(f"PDF file processing error: {str(e)}")
|
479 |
-
return f"## PDF File: {file.name}\n\nError occurred: {str(e)}\n\nThis PDF file cannot be processed."
|
480 |
-
|
481 |
-
def process_uploaded_files(files):
|
482 |
-
"""Combine the contents of all uploaded files into one string."""
|
483 |
-
if not files:
|
484 |
-
return None
|
485 |
-
|
486 |
-
result = "# Uploaded File Contents\n\n"
|
487 |
-
result += "Below is the content from the files provided by the user. Integrate this data as a main source of information for the blog.\n\n"
|
488 |
-
|
489 |
-
for file in files:
|
490 |
-
try:
|
491 |
-
ext = file.name.split('.')[-1].lower()
|
492 |
-
if ext == 'txt':
|
493 |
-
result += process_text_file(file) + "\n\n---\n\n"
|
494 |
-
elif ext == 'csv':
|
495 |
-
result += process_csv_file(file) + "\n\n---\n\n"
|
496 |
-
elif ext == 'pdf':
|
497 |
-
result += process_pdf_file(file) + "\n\n---\n\n"
|
498 |
-
else:
|
499 |
-
result += f"### Unsupported File: {file.name}\n\n---\n\n"
|
500 |
-
except Exception as e:
|
501 |
-
logging.error(f"File processing error {file.name}: {e}")
|
502 |
-
result += f"### File processing error: {file.name}\n\nError: {e}\n\n---\n\n"
|
503 |
-
|
504 |
-
return result
|
505 |
-
|
506 |
-
# ββββββββββββββββββββββββββββββββ Image & Utility βββββββββββββββββββββββββ
|
507 |
-
def generate_image(prompt, w=768, h=768, g=3.5, steps=30, seed=3):
|
508 |
-
"""Image generation function."""
|
509 |
-
if not prompt:
|
510 |
-
return None, "Insufficient prompt"
|
511 |
-
try:
|
512 |
-
res = Client(IMAGE_API_URL).predict(
|
513 |
-
prompt=prompt, width=w, height=h, guidance=g,
|
514 |
-
inference_steps=steps, seed=seed,
|
515 |
-
do_img2img=False, init_image=None,
|
516 |
-
image2image_strength=0.8, resize_img=True,
|
517 |
-
api_name="/generate_image"
|
518 |
-
)
|
519 |
-
return res[0], f"Seed: {res[1]}"
|
520 |
-
except Exception as e:
|
521 |
-
logging.error(e)
|
522 |
-
return None, str(e)
|
523 |
-
|
524 |
-
def extract_image_prompt(blog_text: str, topic: str):
|
525 |
-
"""
|
526 |
-
Generate a single-line English image prompt from the blog content.
|
527 |
-
"""
|
528 |
-
client = get_openai_client()
|
529 |
-
|
530 |
-
try:
|
531 |
-
response = client.chat.completions.create(
|
532 |
-
model="gpt-4.1-mini", # μΌλ°μ μΌλ‘ μ¬μ© κ°λ₯ν λͺ¨λΈλ‘ μ€μ
|
533 |
-
messages=[
|
534 |
-
{"role": "system", "content": "Generate a single-line English image prompt from the following text. Return only the prompt text, nothing else."},
|
535 |
-
{"role": "user", "content": f"Topic: {topic}\n\n---\n{blog_text}\n\n---"}
|
536 |
-
],
|
537 |
-
temperature=1,
|
538 |
-
max_tokens=80,
|
539 |
-
top_p=1
|
540 |
-
)
|
541 |
|
542 |
-
|
|
|
|
|
543 |
except Exception as e:
|
544 |
-
|
545 |
-
return f"A professional photo related to {topic}, high quality"
|
546 |
-
|
547 |
-
def md_to_html(md: str, title="Ginigen Blog"):
|
548 |
-
"""Convert Markdown to HTML."""
|
549 |
-
return f"<!DOCTYPE html><html><head><title>{title}</title><meta charset='utf-8'></head><body>{markdown.markdown(md)}</body></html>"
|
550 |
-
|
551 |
-
def keywords(text: str, top=5):
|
552 |
-
"""Simple keyword extraction."""
|
553 |
-
cleaned = re.sub(r"[^κ°-ν£a-zA-Z0-9\s]", "", text)
|
554 |
-
return " ".join(cleaned.split()[:top])
|
555 |
-
|
556 |
-
# ββββββββββββββββββββββββββββββββ Streamlit UI ββββββββββββββββββββββββββββ
|
557 |
-
def ginigen_app():
|
558 |
-
st.title("Ginigen Blog")
|
559 |
-
|
560 |
-
# Set default session state
|
561 |
-
if "ai_model" not in st.session_state:
|
562 |
-
st.session_state.ai_model = "gpt-4.1-mini" # κ³ μ λͺ¨λΈ μ€μ
|
563 |
-
if "messages" not in st.session_state:
|
564 |
-
st.session_state.messages = []
|
565 |
-
if "auto_save" not in st.session_state:
|
566 |
-
st.session_state.auto_save = True
|
567 |
-
if "generate_image" not in st.session_state:
|
568 |
-
st.session_state.generate_image = False
|
569 |
-
if "web_search_enabled" not in st.session_state:
|
570 |
-
st.session_state.web_search_enabled = True
|
571 |
-
if "blog_template" not in st.session_state:
|
572 |
-
st.session_state.blog_template = "ginigen" # Ginigen recommended style by default
|
573 |
-
if "blog_tone" not in st.session_state:
|
574 |
-
st.session_state.blog_tone = "professional"
|
575 |
-
if "word_count" not in st.session_state:
|
576 |
-
st.session_state.word_count = 1750
|
577 |
-
|
578 |
-
# Sidebar UI
|
579 |
-
sb = st.sidebar
|
580 |
-
sb.title("Blog Settings")
|
581 |
-
|
582 |
-
# λͺ¨λΈ μ ν μ κ±° (κ³ μ λͺ¨λΈ μ¬μ©)
|
583 |
-
|
584 |
-
sb.subheader("Blog Style Settings")
|
585 |
-
sb.selectbox(
|
586 |
-
"Blog Template",
|
587 |
-
options=list(BLOG_TEMPLATES.keys()),
|
588 |
-
format_func=lambda x: BLOG_TEMPLATES[x],
|
589 |
-
key="blog_template"
|
590 |
-
)
|
591 |
-
|
592 |
-
sb.selectbox(
|
593 |
-
"Blog Tone",
|
594 |
-
options=list(BLOG_TONES.keys()),
|
595 |
-
format_func=lambda x: BLOG_TONES[x],
|
596 |
-
key="blog_tone"
|
597 |
-
)
|
598 |
-
|
599 |
-
sb.slider("Blog Length (word count)", 800, 3000, key="word_count")
|
600 |
-
|
601 |
-
|
602 |
-
# Example topics
|
603 |
-
sb.subheader("Example Topics")
|
604 |
-
c1, c2, c3 = sb.columns(3)
|
605 |
-
if c1.button("Real Estate Tax", key="ex1"):
|
606 |
-
process_example(EXAMPLE_TOPICS["example1"])
|
607 |
-
if c2.button("Summer Festivals", key="ex2"):
|
608 |
-
process_example(EXAMPLE_TOPICS["example2"])
|
609 |
-
if c3.button("Investment Guide", key="ex3"):
|
610 |
-
process_example(EXAMPLE_TOPICS["example3"])
|
611 |
-
|
612 |
-
sb.subheader("Other Settings")
|
613 |
-
sb.toggle("Auto Save", key="auto_save")
|
614 |
-
sb.toggle("Auto Image Generation", key="generate_image")
|
615 |
-
|
616 |
-
web_search_enabled = sb.toggle("Use Web Search", value=st.session_state.web_search_enabled)
|
617 |
-
st.session_state.web_search_enabled = web_search_enabled
|
618 |
-
|
619 |
-
if web_search_enabled:
|
620 |
-
st.sidebar.info("β
Web search results will be integrated into the blog.")
|
621 |
-
|
622 |
-
# Download the latest blog (markdown/HTML)
|
623 |
-
latest_blog = next(
|
624 |
-
(m["content"] for m in reversed(st.session_state.messages)
|
625 |
-
if m["role"] == "assistant" and m["content"].strip()),
|
626 |
-
None
|
627 |
-
)
|
628 |
-
if latest_blog:
|
629 |
-
title_match = re.search(r"# (.*?)(\n|$)", latest_blog)
|
630 |
-
title = title_match.group(1).strip() if title_match else "blog"
|
631 |
-
sb.subheader("Download Latest Blog")
|
632 |
-
d1, d2 = sb.columns(2)
|
633 |
-
d1.download_button("Download as Markdown", latest_blog,
|
634 |
-
file_name=f"{title}.md", mime="text/markdown")
|
635 |
-
d2.download_button("Download as HTML", md_to_html(latest_blog, title),
|
636 |
-
file_name=f"{title}.html", mime="text/html")
|
637 |
-
|
638 |
-
# JSON conversation record upload
|
639 |
-
up = sb.file_uploader("Load Conversation History (.json)", type=["json"], key="json_uploader")
|
640 |
-
if up:
|
641 |
-
try:
|
642 |
-
st.session_state.messages = json.load(up)
|
643 |
-
sb.success("Conversation history loaded successfully")
|
644 |
-
except Exception as e:
|
645 |
-
sb.error(f"Failed to load: {e}")
|
646 |
-
|
647 |
-
# JSON conversation record download
|
648 |
-
if sb.button("Download Conversation as JSON"):
|
649 |
-
sb.download_button(
|
650 |
-
"Save",
|
651 |
-
data=json.dumps(st.session_state.messages, ensure_ascii=False, indent=2),
|
652 |
-
file_name="chat_history.json",
|
653 |
-
mime="application/json"
|
654 |
-
)
|
655 |
-
|
656 |
-
# File Upload
|
657 |
-
st.subheader("File Upload")
|
658 |
-
uploaded_files = st.file_uploader(
|
659 |
-
"Upload files to be referenced in your blog (txt, csv, pdf)",
|
660 |
-
type=["txt", "csv", "pdf"],
|
661 |
-
accept_multiple_files=True,
|
662 |
-
key="file_uploader"
|
663 |
-
)
|
664 |
-
|
665 |
-
if uploaded_files:
|
666 |
-
file_count = len(uploaded_files)
|
667 |
-
st.success(f"{file_count} files uploaded. They will be referenced in the blog.")
|
668 |
-
|
669 |
-
with st.expander("Preview Uploaded Files", expanded=False):
|
670 |
-
for idx, file in enumerate(uploaded_files):
|
671 |
-
st.write(f"**File Name:** {file.name}")
|
672 |
-
ext = file.name.split('.')[-1].lower()
|
673 |
-
|
674 |
-
if ext == 'txt':
|
675 |
-
preview = file.read(1000).decode('utf-8', errors='ignore')
|
676 |
-
file.seek(0)
|
677 |
-
st.text_area(
|
678 |
-
f"Preview of {file.name}",
|
679 |
-
preview + ("..." if len(preview) >= 1000 else ""),
|
680 |
-
height=150
|
681 |
-
)
|
682 |
-
elif ext == 'csv':
|
683 |
-
try:
|
684 |
-
df = pd.read_csv(file)
|
685 |
-
file.seek(0)
|
686 |
-
st.write("CSV Preview (up to 5 rows)")
|
687 |
-
st.dataframe(df.head(5))
|
688 |
-
except Exception as e:
|
689 |
-
st.error(f"CSV preview failed: {e}")
|
690 |
-
elif ext == 'pdf':
|
691 |
-
try:
|
692 |
-
file_bytes = file.read()
|
693 |
-
file.seek(0)
|
694 |
-
|
695 |
-
pdf_file = io.BytesIO(file_bytes)
|
696 |
-
reader = PyPDF2.PdfReader(pdf_file, strict=False)
|
697 |
-
|
698 |
-
pc = len(reader.pages)
|
699 |
-
st.write(f"PDF File: {pc} pages")
|
700 |
-
|
701 |
-
if pc > 0:
|
702 |
-
try:
|
703 |
-
page_text = reader.pages[0].extract_text()
|
704 |
-
preview = page_text[:500] if page_text else "(No text extracted)"
|
705 |
-
st.text_area("Preview of the first page", preview + "...", height=150)
|
706 |
-
except:
|
707 |
-
st.warning("Failed to extract text from the first page")
|
708 |
-
except Exception as e:
|
709 |
-
st.error(f"PDF preview failed: {e}")
|
710 |
-
|
711 |
-
if idx < file_count - 1:
|
712 |
-
st.divider()
|
713 |
-
|
714 |
-
# Display existing messages
|
715 |
-
for m in st.session_state.messages:
|
716 |
-
with st.chat_message(m["role"]):
|
717 |
-
st.markdown(m["content"])
|
718 |
-
if "image" in m:
|
719 |
-
st.image(m["image"], caption=m.get("image_caption", ""))
|
720 |
-
|
721 |
-
# User input
|
722 |
-
prompt = st.chat_input("Enter a blog topic or keywords.")
|
723 |
-
if prompt:
|
724 |
-
process_input(prompt, uploaded_files)
|
725 |
-
|
726 |
-
def process_example(topic):
|
727 |
-
"""Process the selected example topic."""
|
728 |
-
process_input(topic, [])
|
729 |
-
|
730 |
-
def process_input(prompt: str, uploaded_files):
|
731 |
-
# Add user's message
|
732 |
-
if not any(m["role"] == "user" and m["content"] == prompt for m in st.session_state.messages):
|
733 |
-
st.session_state.messages.append({"role": "user", "content": prompt})
|
734 |
-
|
735 |
-
with st.chat_message("user"):
|
736 |
-
st.markdown(prompt)
|
737 |
-
|
738 |
-
with st.chat_message("assistant"):
|
739 |
-
placeholder = st.empty()
|
740 |
-
message_placeholder = st.empty()
|
741 |
-
full_response = ""
|
742 |
-
|
743 |
-
use_web_search = st.session_state.web_search_enabled
|
744 |
-
has_uploaded_files = bool(uploaded_files) and len(uploaded_files) > 0
|
745 |
-
|
746 |
-
try:
|
747 |
-
# μν νμλ₯Ό μν μν μ»΄ν¬λνΈ
|
748 |
-
status = st.status("Preparing to generate blog...")
|
749 |
-
status.update(label="Initializing client...")
|
750 |
-
|
751 |
-
client = get_openai_client()
|
752 |
-
|
753 |
-
# Prepare conversation messages
|
754 |
-
messages = []
|
755 |
-
|
756 |
-
# Web search
|
757 |
-
search_content = None
|
758 |
-
if use_web_search:
|
759 |
-
status.update(label="Performing web search...")
|
760 |
-
with st.spinner("Searching the web..."):
|
761 |
-
search_content = do_web_search(keywords(prompt, top=5))
|
762 |
-
|
763 |
-
# Process uploaded files β content
|
764 |
-
file_content = None
|
765 |
-
if has_uploaded_files:
|
766 |
-
status.update(label="Processing uploaded files...")
|
767 |
-
with st.spinner("Analyzing files..."):
|
768 |
-
file_content = process_uploaded_files(uploaded_files)
|
769 |
-
|
770 |
-
# Build system prompt
|
771 |
-
status.update(label="Preparing blog draft...")
|
772 |
-
sys_prompt = get_system_prompt(
|
773 |
-
template=st.session_state.blog_template,
|
774 |
-
tone=st.session_state.blog_tone,
|
775 |
-
word_count=st.session_state.word_count,
|
776 |
-
include_search_results=use_web_search,
|
777 |
-
include_uploaded_files=has_uploaded_files
|
778 |
-
)
|
779 |
-
|
780 |
-
# OpenAI API νΈμΆ μ€λΉ
|
781 |
-
status.update(label="Writing blog content...")
|
782 |
-
|
783 |
-
# λ©μμ§ κ΅¬μ±
|
784 |
-
api_messages = [
|
785 |
-
{"role": "system", "content": sys_prompt}
|
786 |
-
]
|
787 |
-
|
788 |
-
user_content = prompt
|
789 |
-
|
790 |
-
# κ²μ κ²°κ³Όκ° μμΌλ©΄ μ¬μ©μ ν둬ννΈμ μΆκ°
|
791 |
-
if search_content:
|
792 |
-
user_content += "\n\n" + search_content
|
793 |
-
|
794 |
-
# νμΌ λ΄μ©μ΄ μμΌλ©΄ μ¬μ©μ ν둬ννΈμ μΆκ°
|
795 |
-
if file_content:
|
796 |
-
user_content += "\n\n" + file_content
|
797 |
-
|
798 |
-
# μ¬μ©μ λ©μμ§ μΆκ°
|
799 |
-
api_messages.append({"role": "user", "content": user_content})
|
800 |
-
|
801 |
-
# OpenAI API μ€νΈλ¦¬λ° νΈμΆ - κ³ μ λͺ¨λΈ "gpt-4.1-mini" μ¬μ©
|
802 |
-
try:
|
803 |
-
# μ€νΈλ¦¬λ° λ°©μμΌλ‘ API νΈμΆ
|
804 |
-
stream = client.chat.completions.create(
|
805 |
-
model="gpt-4.1-mini", # κ³ μ λͺ¨λΈ μ¬μ©
|
806 |
-
messages=api_messages,
|
807 |
-
temperature=1,
|
808 |
-
max_tokens=MAX_TOKENS,
|
809 |
-
top_p=1,
|
810 |
-
stream=True # μ€νΈλ¦¬λ° νμ±ν
|
811 |
-
)
|
812 |
-
|
813 |
-
# μ€νΈλ¦¬λ° μλ΅ μ²λ¦¬
|
814 |
-
for chunk in stream:
|
815 |
-
if chunk.choices and len(chunk.choices) > 0 and chunk.choices[0].delta.content is not None:
|
816 |
-
content_delta = chunk.choices[0].delta.content
|
817 |
-
full_response += content_delta
|
818 |
-
message_placeholder.markdown(full_response + "β")
|
819 |
-
|
820 |
-
# μ΅μ’
μλ΅ νμ (컀μ μ κ±°)
|
821 |
-
message_placeholder.markdown(full_response)
|
822 |
-
status.update(label="Blog completed!", state="complete")
|
823 |
-
|
824 |
-
except Exception as api_error:
|
825 |
-
error_message = str(api_error)
|
826 |
-
logging.error(f"API error: {error_message}")
|
827 |
-
status.update(label=f"Error: {error_message}", state="error")
|
828 |
-
raise Exception(f"Blog generation error: {error_message}")
|
829 |
-
|
830 |
-
# μ΄λ―Έμ§ μμ±
|
831 |
-
answer_entry_saved = False
|
832 |
-
if st.session_state.generate_image and full_response:
|
833 |
-
with st.spinner("Generating image..."):
|
834 |
-
try:
|
835 |
-
ip = extract_image_prompt(full_response, prompt)
|
836 |
-
img, cap = generate_image(ip)
|
837 |
-
if img:
|
838 |
-
st.image(img, caption=cap)
|
839 |
-
st.session_state.messages.append({
|
840 |
-
"role": "assistant",
|
841 |
-
"content": full_response,
|
842 |
-
"image": img,
|
843 |
-
"image_caption": cap
|
844 |
-
})
|
845 |
-
answer_entry_saved = True
|
846 |
-
except Exception as img_error:
|
847 |
-
logging.error(f"Image generation error: {str(img_error)}")
|
848 |
-
st.warning("μ΄λ―Έμ§ μμ±μ μ€ν¨νμ΅λλ€. λΈλ‘κ·Έ μ½ν
μΈ λ§ μ μ₯λ©λλ€.")
|
849 |
-
|
850 |
-
# Save the answer if not saved above
|
851 |
-
if not answer_entry_saved and full_response:
|
852 |
-
st.session_state.messages.append({"role": "assistant", "content": full_response})
|
853 |
-
|
854 |
-
# Download buttons
|
855 |
-
if full_response:
|
856 |
-
st.subheader("Download This Blog")
|
857 |
-
c1, c2 = st.columns(2)
|
858 |
-
c1.download_button(
|
859 |
-
"Markdown",
|
860 |
-
data=full_response,
|
861 |
-
file_name=f"{prompt[:30]}.md",
|
862 |
-
mime="text/markdown"
|
863 |
-
)
|
864 |
-
c2.download_button(
|
865 |
-
"HTML",
|
866 |
-
data=md_to_html(full_response, prompt[:30]),
|
867 |
-
file_name=f"{prompt[:30]}.html",
|
868 |
-
mime="text/html"
|
869 |
-
)
|
870 |
-
|
871 |
-
# Auto save
|
872 |
-
if st.session_state.auto_save and st.session_state.messages:
|
873 |
-
try:
|
874 |
-
fn = f"chat_history_auto_{datetime.now():%Y%m%d_%H%M%S}.json"
|
875 |
-
with open(fn, "w", encoding="utf-8") as fp:
|
876 |
-
json.dump(st.session_state.messages, fp, ensure_ascii=False, indent=2)
|
877 |
-
except Exception as e:
|
878 |
-
logging.error(f"Auto-save failed: {e}")
|
879 |
-
|
880 |
-
except Exception as e:
|
881 |
-
error_message = str(e)
|
882 |
-
placeholder.error(f"An error occurred: {error_message}")
|
883 |
-
logging.error(f"Process input error: {error_message}")
|
884 |
-
ans = f"An error occurred while processing your request: {error_message}"
|
885 |
-
st.session_state.messages.append({"role": "assistant", "content": ans})
|
886 |
-
|
887 |
-
|
888 |
-
# ββββββββββββββββββββββββββββββββ main ββββββββββββββββββββββββββββββββββββ
|
889 |
-
def main():
|
890 |
-
ginigen_app()
|
891 |
|
892 |
-
|
893 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import os
|
3 |
+
import base64
|
4 |
+
import types
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
# Secretμμ μ μ₯λ μ½λ κ°μ Έμ€κΈ°
|
7 |
+
app_code = os.environ.get("APP", "")
|
|
|
8 |
|
9 |
+
# μ½λ μ€ν ν¨μ
|
10 |
+
def execute_code(code_str):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
try:
|
12 |
+
# μ€ν κ°λ₯ν μ½λλ‘ λ³ν
|
13 |
+
code_module = types.ModuleType('dynamic_code')
|
14 |
+
exec(code_str, code_module.__dict__)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
# νμν ν¨μ μ€ν
|
17 |
+
if hasattr(code_module, 'main'):
|
18 |
+
code_module.main()
|
19 |
except Exception as e:
|
20 |
+
st.error(f"μ½λ μ€ν μ€ μ€λ₯ λ°μ: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
# μ½λ μ€ν
|
23 |
+
if app_code:
|
24 |
+
execute_code(app_code)
|
25 |
+
else:
|
26 |
+
st.error("μ½λλ₯Ό λΆλ¬μ¬ μ μμ΅λλ€. Secretμ΄ μ¬λ°λ₯΄κ² μ€μ λμλμ§ νμΈνμΈμ.")
|