File size: 9,554 Bytes
9fefb79
 
 
3eb719d
9fefb79
 
 
af367a2
25a67f0
da55020
 
20757be
 
9fefb79
20757be
 
 
 
 
 
 
 
 
 
 
 
9fefb79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20757be
3eb719d
20757be
3eb719d
 
 
20757be
 
 
3eb719d
 
20757be
 
 
 
3eb719d
20757be
 
 
8a12a27
3eb719d
 
da55020
 
 
 
 
 
 
 
 
 
 
20757be
da55020
 
 
 
 
20757be
 
 
da55020
 
20757be
9fefb79
 
 
 
20757be
9fefb79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af367a2
 
20757be
 
e8ffddc
9fefb79
 
 
 
 
 
 
 
af367a2
 
9fefb79
be911f6
9fefb79
 
 
3eb719d
9fefb79
 
 
 
af367a2
20757be
af367a2
07e7707
5cf7a29
6d28407
07e7707
 
 
6d28407
 
 
 
 
 
 
 
 
 
 
07e7707
6d28407
 
 
 
 
07e7707
6d28407
07e7707
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da55020
 
20757be
 
07e7707
5cf7a29
07e7707
 
 
 
8888000
07e7707
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import streamlit as st
from streamlit_cropper import st_cropper
from PIL import Image
from transformers import TrOCRProcessor, VisionEncoderDecoderModel, DonutProcessor, NougatProcessor
import torch
import re
import pytesseract
from io import BytesIO
import openai
import requests
from nougat.dataset.rasterize import rasterize_paper
import uuid
import os

def get_pdf(pdf_link):
  unique_filename = f"{os.getcwd()}/downloaded_paper_{uuid.uuid4().hex}.pdf"

  response = requests.get(pdf_link)

  if response.status_code == 200:
      with open(unique_filename, 'wb') as pdf_file:
          pdf_file.write(response.content)
      print("PDF downloaded successfully.")
  else:
      print("Failed to download the PDF.")
  return unique_filename

def predict_arabic(img, model_name="UBC-NLP/Qalam"):
  # if img is None:
  #   _,generated_text=main(image)
  #   return generated_text
  # else:
    # model_name = "UBC-NLP/Qalam"
    processor = TrOCRProcessor.from_pretrained(model_name)
    model = VisionEncoderDecoderModel.from_pretrained(model_name)
    images = img.convert("RGB")
    pixel_values = processor(images, return_tensors="pt").pixel_values
    generated_ids = model.generate(pixel_values, max_length=256)
    generated_text = processor.batch_decode(
        generated_ids, skip_special_tokens=True)[0]
    return generated_text


def predict_english(img, model_name="naver-clova-ix/donut-base-finetuned-cord-v2"):
    processor = DonutProcessor.from_pretrained(model_name)
    model = VisionEncoderDecoderModel.from_pretrained(model_name)

    device = "cuda" if torch.cuda.is_available() else "cpu"
    model.to(device)

    task_prompt = "<s_cord-v2>"
    decoder_input_ids = processor.tokenizer(
        task_prompt, add_special_tokens=False, return_tensors="pt").input_ids

    image = img.convert("RGB")

    pixel_values = processor(image, return_tensors="pt").pixel_values

    outputs = model.generate(
        pixel_values.to(device),
        decoder_input_ids=decoder_input_ids.to(device),
        max_length=model.decoder.config.max_position_embeddings,
        early_stopping=True,
        pad_token_id=processor.tokenizer.pad_token_id,
        eos_token_id=processor.tokenizer.eos_token_id,
        use_cache=True,
        num_beams=1,
        bad_words_ids=[[processor.tokenizer.unk_token_id]],
        return_dict_in_generate=True,
    )

    sequence = processor.batch_decode(outputs.sequences)[0]
    sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(
        processor.tokenizer.pad_token, "")
    sequence = re.sub(r"<.*?>", "", sequence).strip()
    return sequence


def predict_nougat(img, model_name="facebook/nougat-small"):
    device = "cuda" if torch.cuda.is_available() else "cpu"
    processor = NougatProcessor.from_pretrained(model_name)
    model = VisionEncoderDecoderModel.from_pretrained(model_name)
    image = img.convert("RGB")
    pixel_values = processor(image, return_tensors="pt",
                             data_format="channels_first").pixel_values

    # generate transcription (here we only generate 30 tokens)
    outputs = model.generate(
        pixel_values.to(device),
        min_length=1,
        max_new_tokens=1500,
        bad_words_ids=[[processor.tokenizer.unk_token_id]],
    )

    page_sequence = processor.batch_decode(
        outputs, skip_special_tokens=True)[0]
    # page_sequence = processor.post_process_generation(page_sequence, fix_markdown=False)
    return page_sequence


def inference_nougat(pdf_file, pdf_link):
    if pdf_file is None:
        if pdf_link == '':
          print("No file is uploaded and No link is provided")
          return "No data provided. Upload a pdf file or provide a pdf link and try again!"
        else:
            file_name = get_pdf(pdf_link)
    else:
        file_name = pdf_file.name
        pdf_name = pdf_file.name.split('/')[-1].split('.')[0]

    images = rasterize_paper(file_name, return_pil=True)
    sequence = ""
    # infer for every page and concat
    for image in images:
        sequence += predict_nougat(image)

    content = sequence.replace(r'\(', '$').replace(
        r'\)', '$').replace(r'\[', '$$').replace(r'\]', '$$')
    return content


def predict_tesseract(img):
    text = pytesseract.image_to_string(Image.open(img))
    return text


st.set_option('deprecation.showfileUploaderEncoding', False)

st.set_page_config(
    page_title="Ex-stream-ly Cool App",
    page_icon="🖊️",
    layout="wide",
    initial_sidebar_state="expanded",
    menu_items={
        'Get Help': 'https://www.extremelycoolapp.com/help',
        'Report a bug': "https://www.extremelycoolapp.com/bug",
        'About': "# This is a header. This is an *extremely* cool app!"
    }
)

# Upload an image and set some options for demo purposes
st.header("Qalam: A Multilingual OCR System")
st.sidebar.header("Configuration and Image Upload")
st.sidebar.subheader("Adjust Image Enhancement Options")
img_file = st.sidebar.file_uploader(
    label='Upload a file', type=['png', 'jpg', "pdf"])
# input_file = st.sidebar.text_input("Enter the file URL")
realtime_update = st.sidebar.checkbox(label="Update in Real Time", value=True)
# box_color = st.sidebar.color_picker(label="Box Color", value='#0000FF')
aspect_choice = st.sidebar.radio(label="Aspect Ratio", options=[
                                 "Free"])
aspect_dict = {
    "Free": None
}
aspect_ratio = aspect_dict[aspect_choice]
st.sidebar.subheader("Select OCR Language and Model")

Lng = st.sidebar.selectbox(label="Language", options=[
    "Arabic", "English", "French", "Korean", "Chinese"])

Models = {
    "Arabic": "Qalam",
    "English": "Nougat",
    "French": "Tesseract",
    "Korean": "Donut",
    "Chinese": "Donut"
}

st.sidebar.markdown(f"### Selected Model: {Models[Lng]}")

if img_file:
    if not img_file.type == "application/pdf":
        img = Image.open(img_file)
        if not realtime_update:
            st.write("Double click to save crop")
    
        col1, col2 = st.columns(2)
        with col1:
            st.subheader("Input: Upload and Crop Your Image")
        # Get a cropped image from the frontend
            cropped_img = st_cropper(
                img,
                realtime_update=realtime_update,
                box_color="#FF0000",
                aspect_ratio=aspect_ratio,
                should_resize_image=True,
            )
    
        with col2:
        # Manipulate cropped image at will
            st.subheader("Output: Preview and Analyze")
            # _ = cropped_img.thumbnail((150, 150))
            st.image(cropped_img)
    
        button = st.button("Run OCR")
    
        if button:
            with st.spinner('Running OCR...'):
                if Lng == "Arabic":
                    ocr_text = predict_arabic(cropped_img)
                elif Lng == "English":
                    ocr_text = predict_nougat(cropped_img)
                elif Lng == "French":
                    ocr_text = predict_tesseract(cropped_img)
                elif Lng == "Korean":
                    ocr_text = predict_english(cropped_img)
                elif Lng == "Chinese":
                    ocr_text = predict_english(cropped_img)
    
            st.subheader(f"OCR Results for {Lng}")
            st.write(ocr_text)
            text_file = BytesIO(ocr_text.encode())
            st.download_button('Download Text', text_file,
                               file_name='ocr_text.txt')
    
    elif img_file.type == "application/pdf":
        button = st.sidebar.button("Run OCR")
    
        if button:
            with st.spinner('Running OCR...'):
                ocr_text = inference_nougat(img_file, "")
                st.subheader(f"OCR Results for the PDF file")
                st.write(ocr_text)
                text_file = BytesIO(ocr_text.encode())
                st.download_button('Download Text', text_file,
                                   file_name='ocr_text.txt')
    
            # openai.api_key = ""
    
            # if "openai_model" not in st.session_state:
            #     st.session_state["openai_model"] = "gpt-3.5-turbo"
    
            # if "messages" not in st.session_state:
            #     st.session_state.messages = []
    
            # for message in st.session_state.messages:
            #     with st.chat_message(message["role"]):
            #         st.markdown(message["content"])
    
            # if prompt := st.chat_input("How can I help?"):
            #     st.session_state.messages.append({"role": "user", "content": ocr_text + prompt})
            #     with st.chat_message("user"):
            #         st.markdown(prompt)
    
            #     with st.chat_message("assistant"):
            #         message_placeholder = st.empty()
            #         full_response = ""
            #         for response in openai.ChatCompletion.create(
            #             model=st.session_state["openai_model"],
            #             messages=[
            #                 {"role": m["role"], "content": m["content"]}
            #                 for m in st.session_state.messages
            #             ],
            #             stream=True,
            #         ):
            #             full_response += response.choices[0].delta.get("content", "")
            #             message_placeholder.markdown(full_response + "▌")
            #         message_placeholder.markdown(full_response)
            #     st.session_state.messages.append({"role": "assistant", "content": full_response})