File size: 8,603 Bytes
e1b51e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
from PIL import Image
import torch
import numpy as np
import gradio as gr
from pathlib import Path

from busam import Busam

resize_to = 512
checkpoint = "weights.pth"
device = "cpu"
print("Loading model...")
busam = Busam(checkpoint=checkpoint, device=device, side=resize_to)
minmaxnorm = lambda x: (x - x.min()) / (x.max() - x.min())

def edge_inference(img, algorithm, th_low=None, th_high=None):
    algorithm = algorithm.lower()
    print("Loading image...")
    img = np.array(img[:, :, :3])
    print("Getting features...")
    pred, size = busam.process_image(img, do_activate=True)
    print("Computing sobel...")
    if algorithm == "sobel":
        edge = busam.sobel_from_pred(pred, size)
    elif algorithm == "canny":
        th_low, th_high = th_low or 5000, th_high or 10000
        edge = busam.canny_from_pred(pred, size, th_low=th_low, th_high=th_high)
    else:
        raise ValueError("algorithm should be sobel or canny")
    edge = edge.cpu().numpy() if isinstance(edge, torch.Tensor) else edge

    print("Done")
    return Image.fromarray(
        (minmaxnorm(edge) * 255).astype(np.uint8)
    ).resize(size[::-1])

def dimred_inference(
    img,
    algorithm,
    resample_pct,
):
    algorithm = algorithm.lower()
    img = np.array(img[:, :, :3])
    print("Getting features...")
    pred, size = busam.process_image(img, do_activate=True)
    # pred is 1, F, S, S
    assert pred.shape[1] >= 3, "should have at least 3 channels"
    if algorithm == 'pca':
        from sklearn.decomposition import PCA
        reducer = PCA(n_components=3)
    elif algorithm == 'tsne':
        from sklearn.manifold import TSNE
        reducer = TSNE(n_components=3)
    elif algorithm == 'umap':
        from umap import UMAP
        reducer = UMAP(n_components=3)
    else:
        raise ValueError('algorithm should be pca, tsne or umap')
    np_y_hat = pred.detach().cpu().permute(1, 0, 2, 3).numpy()  # F, B, H, W
    np_y_hat = np_y_hat.reshape(np_y_hat.shape[0], -1)  # F, BHW
    np_y_hat = np_y_hat.T  # BHW, F
    resample_pct = 10**resample_pct
    resample_size = int(resample_pct * np_y_hat.shape[0])
    sampled_pixels = np_y_hat[:: np_y_hat.shape[0] // resample_size]
    print("dim reduction fit..." + " " * 30, end="\r")
    reducer = reducer.fit(sampled_pixels)
    print("dim reduction transform..." + " " * 30, end="\r")
    reducer.transform(np_y_hat[:10])  # to numba compile the function
    np_y_hat = reducer.transform(np_y_hat)  # BHW, 3
    print()
    print('Done. Saving...')
    # revert back to original shape
    colors = np_y_hat.reshape(pred.shape[2], pred.shape[3], 3)
    return Image.fromarray((minmaxnorm(colors) * 255).astype(np.uint8)).resize(
            size[::-1]
        )

def segmentation_inference(img, algorithm, scale):
    algorithm = algorithm.lower()
    img = np.array(img[:, :, :3])
    print("Getting features...")
    pred, size = busam.process_image(img, do_activate=True)
    print("Computing segmentation...")
    if algorithm == "kmeans":
        from sklearn.cluster import KMeans
        n_clusters = int(100 / 100**scale)
        kmeans = KMeans(n_clusters=n_clusters, random_state=0).fit(
            pred.view(pred.shape[1], -1).T
        )
        labels = kmeans.labels_
        labels = labels.reshape(pred.shape[2], pred.shape[3])
    elif algorithm == "felzenszwalb":
        from skimage.segmentation import felzenszwalb
        labels = felzenszwalb(
            (minmaxnorm(pred[0].cpu().numpy()) * 255).astype(np.uint8).transpose(1, 2, 0),
            scale=10**(8*scale-3),
            sigma=0,
            min_size=50,
        )
    elif algorithm == "slic":
        from skimage.segmentation import slic
        labels = slic(
            (minmaxnorm(pred[0].cpu().numpy()) * 255).astype(np.uint8).transpose(1, 2, 0),
            n_segments = int(100 / 100**scale),
            compactness=0.00001,
            sigma=1,
        )
    else:
        raise ValueError("algorithm should be kmeans, felzenszwalb or slic")
    print("Done")
    # the labels have values that are usually close to each other in the image and in magnitude, which complicates visualization
    # shuffle the labels to make them more visually distinct
    out = labels.copy()
    out[labels % 4 == 0] = labels[labels % 4 == 0] * 1 / 4
    out[labels % 4 == 1] = labels[labels % 4 == 1] * 4 // 4 + 1
    out[labels % 4 == 2] = labels[labels % 4 == 2] * 2 // 4 + 2
    out[labels % 4 == 3] = labels[labels % 4 == 3] * 3 // 4 + 3
    return Image.fromarray(
        (minmaxnorm(out) * 255).astype(np.uint8)
    ).resize(size[::-1])

def one_click_segmentation(img, row, col, threshold):
    row, col = int(row), int(col)
    img = np.array(img[:, :, :3])
    click_map = np.zeros(img.shape[:2], dtype=bool)
    click_map[max(0, row-5):min(img.shape[0], row+5), col] = True
    click_map[row, max(0, col-5):min(img.shape[1], col+5)] = True
    print("Getting features...")
    pred, size = busam.process_image(img, do_activate=True)
    print("Getting mask...")
    mask = busam.get_mask((pred, size), (row, col))
    print("Done")
    print('shapes=', img.shape, mask.shape, click_map.shape)
    return (img, [(mask, 'Prediction'), (click_map, 'Click')])

with gr.Blocks() as demo:
    with gr.Tab('Edge detection'):
        algorithm = "canny"
        with gr.Row():
            def enable_sliders(algorithm):
                algorithm = algorithm.lower()
                return gr.Slider(visible=algorithm == "canny"), gr.Slider(visible=algorithm == "canny")

            with gr.Column():
                image_input = gr.Image(label="Input Image")
                run_button = gr.Button("Run")
                algorithm = gr.Radio(["Sobel", "Canny"], label="Algorithm", value="Sobel")
                # add sliders for th_low, th_high
                th_low_slider = gr.Slider(0, 32768, 10000, label="Canny's low threshold", visible=False)
                th_high_slider = gr.Slider(0, 32768, 20000, label="Canny's high threshold", visible=False)
            algorithm.change(enable_sliders, inputs=[algorithm], outputs=[th_low_slider, th_high_slider])
            with gr.Column():
                output_image = gr.Image(label="Output Image")
            run_button.click(edge_inference, inputs=[image_input, algorithm, th_low_slider, th_high_slider], outputs=output_image)
        gr.Examples([str(p) for p in Path('demoimgs').glob('*')], inputs=image_input)

    with gr.Tab('Reduction to 3D'):
        with gr.Row():
            with gr.Column():
                image_input = gr.Image(label="Input Image")
                algorithm = gr.Radio(["PCA", "TSNE", "UMAP"], label="Algorithm")
                run_button = gr.Button("Run")
                gr.Markdown("⚠️ UMAP is slow, TSNE is ultra-slow, use resample x<-3 ⚠️")
                resample_pct = gr.Slider(-5, 0, -3, label="Resample (10^x)*100%")
            with gr.Column():
                output_image = gr.Image(label="Output Image")
            run_button.click(dimred_inference, inputs=[image_input, algorithm, resample_pct], outputs=output_image)
        gr.Examples([str(p) for p in Path('demoimgs').glob('*')], inputs=image_input)
    
    with gr.Tab('Classical Segmentation'):
        with gr.Row():
            with gr.Column():
                image_input = gr.Image(label="Input Image")
                algorithm = gr.Radio(['KMeans', 'Felzenszwalb', 'SLIC'], label="Algorithm", value="SLIC")
                scale = gr.Slider(0.1, 1.0, 0.5, label="Scale")
                run_button = gr.Button("Run")
            with gr.Column():
                output_image = gr.Image(label="Output Image")
            run_button.click(segmentation_inference, inputs=[image_input, algorithm, scale], outputs=output_image)
        gr.Examples([str(p) for p in Path('demoimgs').glob('*')], inputs=image_input)

    with gr.Tab('One-click segmentation'):
        with gr.Row():
            with gr.Column():
                image_input = gr.Image(label="Input Image")
                threshold = gr.Slider(0, 1, 0.5, label="Threshold")
                with gr.Row():
                    row = gr.Textbox(10, label="Click's row")
                    col = gr.Textbox(10, label="Click's column")
                run_button = gr.Button("Run")
            with gr.Column():
                output_image = gr.AnnotatedImage(label="Output")
            run_button.click(one_click_segmentation, inputs=[image_input, row, col, threshold], outputs=output_image)
        gr.Examples([str(p) for p in Path('demoimgs').glob('*')], inputs=image_input)


demo.launch(share=False)