Spaces:
Restarting
Restarting
Update app.py
Browse files
app.py
CHANGED
@@ -1,71 +1,149 @@
|
|
1 |
# app.py
|
|
|
2 |
import os
|
3 |
-
|
4 |
-
import gradio as gr
|
5 |
import requests
|
6 |
import pandas as pd
|
|
|
7 |
|
8 |
-
from
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
def run_and_submit(profile):
|
28 |
-
if not profile:
|
29 |
-
return "Please log in to Hugging Face.", None
|
30 |
username = profile.username
|
31 |
|
32 |
-
# Fetch questions
|
33 |
-
|
34 |
-
|
35 |
-
questions =
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
submission = {
|
47 |
-
"username":
|
48 |
"agent_code": f"https://huggingface.co/spaces/{SPACE_ID}/tree/main",
|
49 |
-
"answers":
|
50 |
}
|
51 |
-
|
52 |
-
|
53 |
-
data =
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
return status, pd.DataFrame(results)
|
57 |
|
58 |
-
|
|
|
59 |
with gr.Blocks() as demo:
|
60 |
-
gr.Markdown(
|
61 |
-
gr.LoginButton()
|
62 |
-
run_btn = gr.Button("Run
|
63 |
-
status_out = gr.
|
64 |
-
table_out
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
if __name__ == "__main__":
|
68 |
-
demo.launch(
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
1 |
# app.py
|
2 |
+
|
3 |
import os
|
4 |
+
import time
|
|
|
5 |
import requests
|
6 |
import pandas as pd
|
7 |
+
import gradio as gr
|
8 |
|
9 |
+
from smolagents import (
|
10 |
+
CodeAgent,
|
11 |
+
DuckDuckGoSearchTool,
|
12 |
+
PythonInterpreterTool,
|
13 |
+
InferenceClientModel
|
14 |
+
)
|
15 |
+
|
16 |
+
# --- Configuration ---
|
17 |
+
API_URL = os.getenv("API_URL", "https://agents-course-unit4-scoring.hf.space")
|
18 |
+
SPACE_ID = os.getenv("SPACE_ID") # e.g. "your-username/your-space"
|
19 |
+
HF_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN") # Hugging Face token
|
20 |
+
# No need for HF_USERNAME—Gradio OAuthProfile provides it
|
21 |
+
|
22 |
+
if not all([SPACE_ID, HF_TOKEN]):
|
23 |
+
raise RuntimeError(
|
24 |
+
"Please set the following environment variables in your Space settings:\n"
|
25 |
+
" • SPACE_ID\n"
|
26 |
+
" • HUGGINGFACEHUB_API_TOKEN"
|
27 |
+
)
|
28 |
+
|
29 |
+
WELCOME_TEXT = """
|
30 |
+
## Welcome to the GAIA Benchmark Runner 🎉
|
31 |
+
|
32 |
+
This challenge is your final hands-on project:
|
33 |
+
- Build an agent and evaluate it on a subset of the GAIA benchmark.
|
34 |
+
- You need **≥30%** to earn your Certificate of Completion. 🏅
|
35 |
+
- Submit your score and see how you stack up on the Student Leaderboard!
|
36 |
+
"""
|
37 |
+
|
38 |
+
# --- Agent Definition ---
|
39 |
+
class GAIAAgent:
|
40 |
+
def __init__(self, model_id="meta-llama/Llama-3-70B-Instruct"):
|
41 |
+
# Initialize HF Inference client
|
42 |
+
self.model = InferenceClientModel(
|
43 |
+
model_id=model_id,
|
44 |
+
token=HF_TOKEN,
|
45 |
+
provider="hf-inference",
|
46 |
+
timeout=120,
|
47 |
+
temperature=0.2
|
48 |
+
)
|
49 |
+
# Attach search + code execution tools
|
50 |
+
tools = [
|
51 |
+
DuckDuckGoSearchTool(),
|
52 |
+
PythonInterpreterTool()
|
53 |
+
]
|
54 |
+
self.agent = CodeAgent(
|
55 |
+
tools=tools,
|
56 |
+
model=self.model,
|
57 |
+
executor_type="local"
|
58 |
+
)
|
59 |
+
|
60 |
+
def answer(self, question: str, task_file: str = None) -> str:
|
61 |
+
prompt = question
|
62 |
+
if task_file:
|
63 |
+
try:
|
64 |
+
with open(task_file, "r") as f:
|
65 |
+
content = f.read()
|
66 |
+
prompt += f"\n\nAttached file:\n```\n{content}\n```"
|
67 |
+
except:
|
68 |
+
pass
|
69 |
+
return self.agent.run(prompt)
|
70 |
+
|
71 |
+
# --- Runner & Submission ---
|
72 |
+
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
73 |
+
if profile is None:
|
74 |
+
return "⚠️ Please log in with your Hugging Face account.", pd.DataFrame()
|
75 |
|
|
|
|
|
|
|
76 |
username = profile.username
|
77 |
|
78 |
+
# 1) Fetch GAIA questions
|
79 |
+
q_resp = requests.get(f"{API_URL}/questions", timeout=15)
|
80 |
+
q_resp.raise_for_status()
|
81 |
+
questions = q_resp.json() or []
|
82 |
+
if not questions:
|
83 |
+
return "❌ No questions returned; check your API_URL.", pd.DataFrame()
|
84 |
+
|
85 |
+
# 2) Initialize your agent
|
86 |
+
agent = GAIAAgent()
|
87 |
+
|
88 |
+
# 3) Run agent on each question
|
89 |
+
results, payload = [], []
|
90 |
+
for item in questions:
|
91 |
+
task_id = item.get("task_id")
|
92 |
+
question = item.get("question", "")
|
93 |
+
file_path = item.get("task_file_path") # optional
|
94 |
+
|
95 |
+
try:
|
96 |
+
answer = agent.answer(question, file_path)
|
97 |
+
except Exception as e:
|
98 |
+
answer = f"ERROR: {e}"
|
99 |
+
|
100 |
+
results.append({
|
101 |
+
"Task ID": task_id,
|
102 |
+
"Question": question,
|
103 |
+
"Answer": answer
|
104 |
+
})
|
105 |
+
payload.append({
|
106 |
+
"task_id": task_id,
|
107 |
+
"submitted_answer": answer
|
108 |
+
})
|
109 |
+
|
110 |
+
time.sleep(0.5) # throttle requests
|
111 |
+
|
112 |
+
# 4) Submit all answers
|
113 |
submission = {
|
114 |
+
"username": username,
|
115 |
"agent_code": f"https://huggingface.co/spaces/{SPACE_ID}/tree/main",
|
116 |
+
"answers": payload
|
117 |
}
|
118 |
+
s_resp = requests.post(f"{API_URL}/submit", json=submission, timeout=60)
|
119 |
+
s_resp.raise_for_status()
|
120 |
+
data = s_resp.json()
|
121 |
+
|
122 |
+
# 5) Build status message
|
123 |
+
status = (
|
124 |
+
f"✅ **Submission Successful!**\n\n"
|
125 |
+
f"**User:** {data.get('username')}\n"
|
126 |
+
f"**Score:** {data.get('score')}% "
|
127 |
+
f"({data.get('correct_count')}/{data.get('total_attempted')} correct)\n"
|
128 |
+
f"**Message:** {data.get('message')}"
|
129 |
+
)
|
130 |
|
131 |
return status, pd.DataFrame(results)
|
132 |
|
133 |
+
|
134 |
+
# --- Gradio Interface ---
|
135 |
with gr.Blocks() as demo:
|
136 |
+
gr.Markdown(WELCOME_TEXT)
|
137 |
+
login = gr.LoginButton()
|
138 |
+
run_btn = gr.Button("▶️ Run Benchmark & Submit")
|
139 |
+
status_out = gr.Markdown()
|
140 |
+
table_out = gr.Dataframe(headers=["Task ID","Question","Answer"], wrap=True)
|
141 |
+
|
142 |
+
run_btn.click(
|
143 |
+
fn=run_and_submit_all,
|
144 |
+
inputs=[login],
|
145 |
+
outputs=[status_out, table_out]
|
146 |
+
)
|
147 |
|
148 |
if __name__ == "__main__":
|
149 |
+
demo.launch()
|
|
|
|
|
|