Spaces:
Restarting
Restarting
Update app.py
Browse files
app.py
CHANGED
@@ -7,10 +7,17 @@ import requests
|
|
7 |
import pandas as pd
|
8 |
import gradio as gr
|
9 |
|
10 |
-
#
|
11 |
-
API_URL
|
12 |
-
MODEL_ID
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
WELCOME = """
|
16 |
## GAIA Benchmark Runner π
|
@@ -19,14 +26,26 @@ Build your agent, score **β₯30%** to earn your Certificate,
|
|
19 |
and see where you land on the Student Leaderboard!
|
20 |
"""
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
class GAIAAgent:
|
23 |
-
def __init__(self, model_id: str
|
24 |
-
print(f"[DEBUG] Initializing
|
25 |
self.model_id = model_id
|
26 |
-
self.headers =
|
27 |
|
28 |
def answer(self, prompt: str) -> str:
|
29 |
-
print(f"[DEBUG] Sending prompt of length {len(prompt)} to HF Inference") # debug
|
30 |
payload = {
|
31 |
"inputs": prompt,
|
32 |
"parameters": {"max_new_tokens": 512, "temperature": 0.2}
|
@@ -35,65 +54,50 @@ class GAIAAgent:
|
|
35 |
resp = requests.post(url, headers=self.headers, json=payload, timeout=60)
|
36 |
resp.raise_for_status()
|
37 |
data = resp.json()
|
38 |
-
print(f"[DEBUG] Got response from model: {data!r}") # debug
|
39 |
if isinstance(data, list) and data and "generated_text" in data[0]:
|
40 |
return data[0]["generated_text"].strip()
|
41 |
return str(data)
|
42 |
|
43 |
-
|
|
|
44 |
try:
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
return
|
49 |
-
print(f"[DEBUG] Logged in as: {profile.username}") # debug
|
50 |
-
username = profile.username
|
51 |
-
|
52 |
-
hf_token = HF_TOKEN_ENV or getattr(profile, "access_token", None)
|
53 |
-
print(f"[DEBUG] Using HF token from {'env' if HF_TOKEN_ENV else 'profile'}") # debug
|
54 |
-
if not hf_token:
|
55 |
-
print("[DEBUG] No HF token found") # debug
|
56 |
-
return (
|
57 |
-
"β No Hugging Face token found.\n"
|
58 |
-
"Set HUGGINGFACEHUB_API_TOKEN in Secrets or log in via the button.",
|
59 |
-
pd.DataFrame()
|
60 |
-
)
|
61 |
|
62 |
# 1) Fetch GAIA questions
|
63 |
-
print(f"[DEBUG] Fetching questions from {API_URL}/questions") # debug
|
64 |
q_resp = requests.get(f"{API_URL}/questions", timeout=15)
|
65 |
q_resp.raise_for_status()
|
66 |
questions = q_resp.json() or []
|
67 |
-
print(f"[DEBUG] Received {len(questions)} questions") # debug
|
68 |
if not questions:
|
69 |
-
return
|
70 |
|
71 |
# 2) Init agent
|
72 |
-
agent = GAIAAgent(MODEL_ID
|
73 |
|
74 |
# 3) Answer each
|
75 |
results = []
|
76 |
payload = []
|
77 |
for item in questions:
|
78 |
-
print(f"[DEBUG] Processing task_id={item.get('task_id')}") # debug
|
79 |
tid = item.get("task_id")
|
80 |
qtxt = item.get("question", "")
|
81 |
try:
|
82 |
ans = agent.answer(qtxt)
|
83 |
except Exception as e:
|
84 |
ans = f"ERROR: {e}"
|
85 |
-
print(f"[DEBUG] Error answering: {e}") # debug
|
86 |
results.append({"Task ID": tid, "Question": qtxt, "Answer": ans})
|
87 |
payload.append({"task_id": tid, "submitted_answer": ans})
|
88 |
time.sleep(0.5)
|
89 |
|
90 |
-
# 4) Submit
|
91 |
-
|
92 |
-
|
|
|
|
|
93 |
s_resp = requests.post(f"{API_URL}/submit", json=submission, timeout=60)
|
94 |
s_resp.raise_for_status()
|
95 |
data = s_resp.json()
|
96 |
-
print(f"[DEBUG] Submission response: {data!r}") # debug
|
97 |
|
98 |
# 5) Build status text
|
99 |
status = (
|
@@ -108,18 +112,18 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
108 |
except Exception as e:
|
109 |
tb = traceback.format_exc()
|
110 |
print("[ERROR] Unhandled exception:\n", tb)
|
111 |
-
return (f"β Unexpected error:\n{e}", pd.DataFrame()
|
112 |
|
|
|
113 |
with gr.Blocks() as demo:
|
114 |
gr.Markdown(WELCOME)
|
115 |
-
login = gr.LoginButton()
|
116 |
run_btn = gr.Button("βΆοΈ Run GAIA Benchmark")
|
117 |
status = gr.Markdown()
|
118 |
table_df = gr.Dataframe(headers=["Task ID", "Question", "Answer"], wrap=True)
|
119 |
|
120 |
run_btn.click(
|
121 |
fn=run_and_submit_all,
|
122 |
-
inputs=[
|
123 |
outputs=[status, table_df]
|
124 |
)
|
125 |
|
|
|
7 |
import pandas as pd
|
8 |
import gradio as gr
|
9 |
|
10 |
+
# βββ Configuration ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
11 |
+
API_URL = os.getenv("API_URL", "https://agents-course-unit4-scoring.hf.space")
|
12 |
+
MODEL_ID = os.getenv("MODEL_ID", "meta-llama/Llama-2-7b-instruct")
|
13 |
+
HF_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
14 |
+
|
15 |
+
if not HF_TOKEN:
|
16 |
+
raise RuntimeError(
|
17 |
+
"β Please set HUGGINGFACEHUB_API_TOKEN in your Space Secrets."
|
18 |
+
)
|
19 |
+
|
20 |
+
HEADERS = {"Authorization": f"Bearer {HF_TOKEN}"}
|
21 |
|
22 |
WELCOME = """
|
23 |
## GAIA Benchmark Runner π
|
|
|
26 |
and see where you land on the Student Leaderboard!
|
27 |
"""
|
28 |
|
29 |
+
# βββ Utility to fetch your HF username from the token ββββββββββββββββββββββββ
|
30 |
+
def get_hf_username():
|
31 |
+
try:
|
32 |
+
resp = requests.get("https://huggingface.co/api/whoami-v2", headers=HEADERS, timeout=10)
|
33 |
+
resp.raise_for_status()
|
34 |
+
data = resp.json()
|
35 |
+
# V2 returns {"user": { "id": ..., "username": ... }, ...}
|
36 |
+
return data.get("user", {}).get("username") or data.get("name")
|
37 |
+
except Exception as e:
|
38 |
+
print("[DEBUG] whoami failed:", e)
|
39 |
+
return None
|
40 |
+
|
41 |
+
# βββ Simple HF-Inference Agent βββββββββββββββββββββββββββββββββββββββββββββ
|
42 |
class GAIAAgent:
|
43 |
+
def __init__(self, model_id: str):
|
44 |
+
print(f"[DEBUG] Initializing with model {model_id}")
|
45 |
self.model_id = model_id
|
46 |
+
self.headers = HEADERS
|
47 |
|
48 |
def answer(self, prompt: str) -> str:
|
|
|
49 |
payload = {
|
50 |
"inputs": prompt,
|
51 |
"parameters": {"max_new_tokens": 512, "temperature": 0.2}
|
|
|
54 |
resp = requests.post(url, headers=self.headers, json=payload, timeout=60)
|
55 |
resp.raise_for_status()
|
56 |
data = resp.json()
|
|
|
57 |
if isinstance(data, list) and data and "generated_text" in data[0]:
|
58 |
return data[0]["generated_text"].strip()
|
59 |
return str(data)
|
60 |
|
61 |
+
# βββ Gradio callback ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
62 |
+
def run_and_submit_all():
|
63 |
try:
|
64 |
+
# 0) Resolve username
|
65 |
+
username = get_hf_username()
|
66 |
+
if not username:
|
67 |
+
return "β Could not fetch your HF username. Check your token.", pd.DataFrame()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
# 1) Fetch GAIA questions
|
|
|
70 |
q_resp = requests.get(f"{API_URL}/questions", timeout=15)
|
71 |
q_resp.raise_for_status()
|
72 |
questions = q_resp.json() or []
|
|
|
73 |
if not questions:
|
74 |
+
return "β No questions returned; check your API_URL.", pd.DataFrame()
|
75 |
|
76 |
# 2) Init agent
|
77 |
+
agent = GAIAAgent(MODEL_ID)
|
78 |
|
79 |
# 3) Answer each
|
80 |
results = []
|
81 |
payload = []
|
82 |
for item in questions:
|
|
|
83 |
tid = item.get("task_id")
|
84 |
qtxt = item.get("question", "")
|
85 |
try:
|
86 |
ans = agent.answer(qtxt)
|
87 |
except Exception as e:
|
88 |
ans = f"ERROR: {e}"
|
|
|
89 |
results.append({"Task ID": tid, "Question": qtxt, "Answer": ans})
|
90 |
payload.append({"task_id": tid, "submitted_answer": ans})
|
91 |
time.sleep(0.5)
|
92 |
|
93 |
+
# 4) Submit all answers
|
94 |
+
submission = {
|
95 |
+
"username": username,
|
96 |
+
"answers": payload
|
97 |
+
}
|
98 |
s_resp = requests.post(f"{API_URL}/submit", json=submission, timeout=60)
|
99 |
s_resp.raise_for_status()
|
100 |
data = s_resp.json()
|
|
|
101 |
|
102 |
# 5) Build status text
|
103 |
status = (
|
|
|
112 |
except Exception as e:
|
113 |
tb = traceback.format_exc()
|
114 |
print("[ERROR] Unhandled exception:\n", tb)
|
115 |
+
return (f"β Unexpected error:\n{e}\n\nSee logs for details."), pd.DataFrame()
|
116 |
|
117 |
+
# βββ Gradio UI ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
118 |
with gr.Blocks() as demo:
|
119 |
gr.Markdown(WELCOME)
|
|
|
120 |
run_btn = gr.Button("βΆοΈ Run GAIA Benchmark")
|
121 |
status = gr.Markdown()
|
122 |
table_df = gr.Dataframe(headers=["Task ID", "Question", "Answer"], wrap=True)
|
123 |
|
124 |
run_btn.click(
|
125 |
fn=run_and_submit_all,
|
126 |
+
inputs=[],
|
127 |
outputs=[status, table_df]
|
128 |
)
|
129 |
|