Spaces:
Sleeping
Sleeping
File size: 2,928 Bytes
1b442a6 0307fac 1b442a6 0307fac 1b442a6 0307fac 1b442a6 0307fac 31b27a0 0307fac 31b27a0 0307fac 31b27a0 1b442a6 0307fac 1b442a6 0307fac 1b442a6 0307fac 1b442a6 0307fac 1b442a6 0307fac 1b442a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
import numpy as np # Import numpy
# Check for GPU availability and set device
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# Load the model and tokenizer
model_name = "explorewithai/PersianSwear-Detector" # Corrected model name
loaded_model = AutoModelForSequenceClassification.from_pretrained(model_name).to(device) # Move model to device
loaded_tokenizer = AutoTokenizer.from_pretrained(model_name)
def predict_sentiment(text):
"""Predicts the sentiment (Bad Word, Good Word, Neutral Word) of a given text."""
inputs = loaded_tokenizer(text, return_tensors="pt", padding=True, truncation=True).to(device) # Move inputs to GPU
with torch.no_grad(): # Ensure no gradients are calculated
outputs = loaded_model(**inputs)
logits = outputs.logits
probabilities = torch.nn.functional.softmax(logits, dim=-1) # Get probabilities
prediction = torch.argmax(logits, dim=-1).item()
# Map numeric labels to meaningful strings and get probabilities
if prediction == 4:
sentiment = "Bad sentence"
elif prediction == 0:
sentiment = "Good sentence"
elif prediction == 3:
sentiment = "Neutral sentence"
else:
sentiment = "Unknown" # Should not happen, but good practice
# Create a dictionary for the probabilities
prob_dict = {}
if "Bad Word" in ["Bad Word", "Good Word", "Neutral Word"]:
prob_dict["Bad Word"] = float(probabilities[0][4]) if 4 < probabilities.shape[1] else 0.0
if "Good Word" in ["Bad Word", "Good Word", "Neutral Word"]:
prob_dict["Good Word"] = float(probabilities[0][0]) if 0 < probabilities.shape[1] else 0.0
if "Neutral Word" in ["Bad Word", "Good Word", "Neutral Word"]:
prob_dict["Neutral Word"] = float(probabilities[0][3]) if 3 < probabilities.shape[1] else 0.0
return prob_dict, sentiment
# Create example sentences
examples = [
["چه کت و شلوار زیبایی"], # Good word example
["این فیلم خیلی زیبا بود"], # Good word example
["میز"], # Neutral word example
["کثافت"], # Bad word example
["هوا خوب است."] #neutral
]
# Create the Gradio interface
iface = gr.Interface(
fn=predict_sentiment,
inputs=gr.Textbox(label="Enter Persian Text", lines=5, placeholder="Type your text here..."),
outputs=[
gr.Label(label="Sentiment Probabilities"),
gr.Textbox(label="Predicted Sentiment") # Output component for the sentiment string
],
title="Persian Swear Word Detection",
description="Enter a Persian sentence and get its sentiment (Good Word, Bad Word, or Neutral Word).",
examples=examples,
live=False # Set to True for automatic updates as you type
)
if __name__ == "__main__":
iface.launch() |