tavr_project / app.py
fmegahed's picture
Updated the default values for the containers and placed the description string outside of the interface function
7ee25ce verified
# pip install pycaret
from pandas.api.types import CategoricalDtype
import pandas as pd
import jinja2
from pycaret.classification import *
import imblearn as im
import sklearn
import gradio as gr
import numpy as np
import io
import pickle
import requests
import urllib.request
import shutil
# url = 'https://raw.githubusercontent.com/fmegahed/tavr_paper/main/data/example_data2.csv'
# download = requests.get(url).content
ex_data =pd.read_csv('example_data2.csv')
ex_data = ex_data.to_numpy()
ex_data = ex_data.tolist()
def predict(age, female, race, elective, aweekend, zipinc_qrtl, hosp_region, hosp_division, hosp_locteach,
hosp_bedsize, h_contrl, pay, anemia, atrial_fibrillation,
cancer, cardiac_arrhythmias, carotid_artery_disease,
chronic_kidney_disease, chronic_pulmonary_disease, coagulopathy,
depression, diabetes_mellitus, drug_abuse, dyslipidemia, endocarditis,
family_history, fluid_and_electrolyte_disorder, heart_failure,
hypertension, known_cad, liver_disease, obesity, peripheral_vascular_disease,
prior_cabg, prior_icd, prior_mi, prior_pci, prior_ppm, prior_tia_stroke,
pulmonary_circulation_disorder, smoker, valvular_disease, weight_loss,
endovascular_tavr, transapical_tavr):
df = pd.DataFrame.from_dict({
'age': [age], 'female': [female], 'race': [race], 'elective': elective,
'aweekend': [aweekend], 'zipinc_qrtl': [zipinc_qrtl],
'hosp_region': [hosp_region], 'hosp_division': [hosp_division],
'hosp_locteach': [hosp_locteach], 'hosp_bedsize': [hosp_bedsize],
'h_contrl': [h_contrl], 'pay': [pay], 'anemia': [anemia],
'atrial_fibrillation': [atrial_fibrillation], 'cancer': [cancer],
'cardiac_arrhythmias': [cardiac_arrhythmias],
'carotid_artery_disease': [carotid_artery_disease],
'chronic_kidney_disease': [chronic_kidney_disease],
'chronic_pulmonary_disease': [chronic_pulmonary_disease],
'coagulopathy': [coagulopathy], 'depression': [depression],
'diabetes_mellitus': [diabetes_mellitus], 'drug_abuse': [drug_abuse],
'dyslipidemia': [dyslipidemia], 'endocarditis': [endocarditis],
'family_history': [family_history], 'fluid_and_electrolyte_disorder': [fluid_and_electrolyte_disorder],
'heart_failure': [heart_failure], 'hypertension': [hypertension],
'known_cad': [known_cad], 'liver_disease': [liver_disease],
'obesity': [obesity], 'peripheral_vascular_disease': [peripheral_vascular_disease],
'prior_cabg': [prior_cabg], 'prior_icd': [prior_icd], 'prior_mi': [prior_mi],
'prior_pci': [prior_pci], 'prior_ppm': [prior_ppm], 'prior_tia_stroke': [prior_tia_stroke],
'pulmonary_circulation_disorder': [pulmonary_circulation_disorder],
'smoker': [smoker], 'valvular_disease': [valvular_disease],
'weight_loss': [weight_loss], 'endovascular_tavr': [endovascular_tavr],
'transapical_tavr': [transapical_tavr]
})
df.loc[:, df.dtypes == 'object'] =\
df.select_dtypes(['object'])\
.apply(lambda x: x.astype('category'))
# converting ordinal column to ordinal
ordinal_cat = CategoricalDtype(categories = ['FirstQ', 'SecondQ', 'ThirdQ', 'FourthQ'], ordered = True)
df.zipinc_qrtl = df.zipinc_qrtl.astype(ordinal_cat)
with urllib.request.urlopen('https://github.com/fmegahed/tavr_paper/blob/main/data/final_model.pkl?raw=true') as response, open('final_model.pkl', 'wb') as out_file:
shutil.copyfileobj(response, out_file)
model = load_model('final_model')
pred = predict_model(model, df, raw_score=True)
return {'Death %': round(100*pred['Score_Yes'][0], 2),
'Survival %': round(100*pred['Score_No'][0], 2),
'Predicting Death Outcome:': pred['Label'][0]}
# Defining the containers for each input
inputs = [
gr.Slider(minimum=18, maximum=100, value=80, label="Age"),
gr.Dropdown(choices=["Female", "Male"], value="Female", label="Sex"),
gr.Dropdown(choices=['Asian or Pacific Islander', 'Black', 'Hispanic', 'Native American', 'White', 'Other'], value='White', label='Race'),
gr.Radio(choices=['Elective', 'NonElective'], value='Elective', label='Elective'),
gr.Radio(choices=["No", "Yes"], value="No", label='Weekend'),
gr.Radio(choices=['FirstQ', 'SecondQ', 'ThirdQ', 'FourthQ'], value='SecondQ', label='Zip Income Quartile'),
gr.Radio(choices=['Midwest', 'Northeast', 'South', 'West'], value='South', label='Hospital Region'),
gr.Radio(choices=['New England', 'Middle Atlantic', 'East North Central', 'West North Central', 'South Atlantic', 'East South Central', 'West South Central', 'Mountain', 'Pacific'], value='South Atlantic', label='Hospital Division'),
gr.Radio(choices=['Urban teaching', 'Urban nonteaching', 'Rural'], value='Urban teaching', label='Hospital Location/Teaching'),
gr.Radio(choices=['Small', 'Medium', 'Large'], value='Large', label='Hospital Bedsize'),
gr.Radio(choices=['Government_nonfederal', 'Private_invest_own', 'Private_not_profit'], value='Private_not_profit', label='Hospital Control'),
gr.Dropdown(choices=['Private insurance', 'Medicare', 'Medicaid', 'Self-pay', 'No charge', 'Other'], value='Medicare', label='Payee'),
# Comorbidities — default to "No" with some "Yes" for making the default selection more aesthetically pleasing
gr.Radio(choices=["No", "Yes"], value="Yes", label='Anemia'),
gr.Radio(choices=["No", "Yes"], value="Yes", label='Atrial Fibrillation'),
gr.Radio(choices=["No", "Yes"], value="No", label='Cancer'),
gr.Radio(choices=["No", "Yes"], value="Yes", label='Cardiac Arrhythmias'),
gr.Radio(choices=["No", "Yes"], value="No", label='Carotid Artery Disease'),
gr.Radio(choices=["No", "Yes"], value="Yes", label='Chronic Kidney Disease'),
gr.Radio(choices=["No", "Yes"], value="Yes", label='Chronic Pulmonary Disease'),
gr.Radio(choices=["No", "Yes"], value="No", label='Coagulopathy'),
gr.Radio(choices=["No", "Yes"], value="No", label='Depression'),
gr.Radio(choices=["No", "Yes"], value="Yes", label='Diabetes Mellitus'),
gr.Radio(choices=["No", "Yes"], value="No", label='Drug Abuse'),
gr.Radio(choices=["No", "Yes"], value="Yes", label='Dyslipidemia'),
gr.Radio(choices=["No", "Yes"], value="No", label='Endocarditis'),
gr.Radio(choices=["No", "Yes"], value="No", label='Family History'),
gr.Radio(choices=["No", "Yes"], value="Yes", label='Fluid and Electrolyte Disorder'),
gr.Radio(choices=["No", "Yes"], value="Yes", label='Heart Failure'),
gr.Radio(choices=["No", "Yes"], value="Yes", label='Hypertension'),
gr.Radio(choices=["No", "Yes"], value="Yes", label='Known CAD'),
gr.Radio(choices=["No", "Yes"], value="No", label='Liver Disease'),
gr.Radio(choices=["No", "Yes"], value="Yes", label='Obesity'),
gr.Radio(choices=["No", "Yes"], value="Yes", label='Peripheral Vascular Disease'),
gr.Radio(choices=["No", "Yes"], value="Yes", label='Prior CABG'),
gr.Radio(choices=["No", "Yes"], value="Yes", label='Prior ICD'),
gr.Radio(choices=["No", "Yes"], value="Yes", label='Prior MI'),
gr.Radio(choices=["No", "Yes"], value="Yes", label='Prior PCI'),
gr.Radio(choices=["No", "Yes"], value="Yes", label='Prior PPM'),
gr.Radio(choices=["No", "Yes"], value="Yes", label='Prior TIA Stroke'),
gr.Radio(choices=["No", "Yes"], value="No", label='Pulmonary Circulation Disorder'),
gr.Radio(choices=["No", "Yes"], value="No", label='Smoker'),
gr.Radio(choices=["No", "Yes"], value="Yes", label='Valvular Disease'),
gr.Radio(choices=["No", "Yes"], value="No", label='Weight Loss'),
gr.Radio(choices=["No", "Yes"], value="Yes", label='Endovascular TAVR'),
gr.Radio(choices=["No", "Yes"], value="Yes", label='Transapical TAVR')
]
# The app's first few descriptive lines
description_html = """
<p style="font-size:16px; line-height:1.6;">
This app predicts in-hospital mortality after TAVR using a finalized logistic regression model with L2 penalty, based on national inpatient data from 2012–2019 (HCUP NIS).<br>
<br>
Published paper:
<a href="https://www.nature.com/articles/s41598-023-37358-9.pdf" target="_blank">
Alhwiti, T., Aldrugh, S., & Megahed, F. M. (2023), <i>Scientific Reports</i>
</a>
</p>
"""
# Defining and launching the interface
iface = gr.Interface(
fn = predict,
inputs = inputs,
outputs = 'text',
live=True,
title = "Predicting In-Hospital Mortality After TAVR Using Preoperative Variables and Penalized Logistic Regression",
description = description_html,
css = 'https://bootswatch.com/5/journal/bootstrap.css')
iface.launch()