Spaces:
Sleeping
Sleeping
metrics should not be a string
Browse files
app.py
CHANGED
@@ -15,7 +15,7 @@ from statsforecast.models import (
|
|
15 |
)
|
16 |
|
17 |
from utilsforecast.evaluation import evaluate
|
18 |
-
from utilsforecast.losses import
|
19 |
|
20 |
# Function to load and process uploaded CSV
|
21 |
def load_data(file):
|
@@ -111,7 +111,7 @@ def run_forecast(
|
|
111 |
try:
|
112 |
if eval_strategy == "Cross Validation":
|
113 |
cv_results = sf.cross_validation(df=df, h=horizon, step_size=step_size, n_windows=num_windows)
|
114 |
-
evaluation = evaluate(df=cv_results, metrics=[
|
115 |
eval_df = pd.DataFrame(evaluation).reset_index()
|
116 |
fig_forecast = create_forecast_plot(cv_results, df)
|
117 |
return eval_df, cv_results, fig_forecast, "Cross validation completed successfully!"
|
@@ -125,7 +125,7 @@ def run_forecast(
|
|
125 |
test_df = df.iloc[train_size:]
|
126 |
sf.fit(train_df)
|
127 |
forecast = sf.predict(h=horizon)
|
128 |
-
evaluation = evaluate(df=forecast, metrics=[
|
129 |
eval_df = pd.DataFrame(evaluation).reset_index()
|
130 |
fig_forecast = create_forecast_plot(forecast, df)
|
131 |
return eval_df, forecast, fig_forecast, "Fixed window evaluation completed successfully!"
|
|
|
15 |
)
|
16 |
|
17 |
from utilsforecast.evaluation import evaluate
|
18 |
+
from utilsforecast.losses import *
|
19 |
|
20 |
# Function to load and process uploaded CSV
|
21 |
def load_data(file):
|
|
|
111 |
try:
|
112 |
if eval_strategy == "Cross Validation":
|
113 |
cv_results = sf.cross_validation(df=df, h=horizon, step_size=step_size, n_windows=num_windows)
|
114 |
+
evaluation = evaluate(df=cv_results, metrics=[bias, made, rmse, mape], models=model_aliases)
|
115 |
eval_df = pd.DataFrame(evaluation).reset_index()
|
116 |
fig_forecast = create_forecast_plot(cv_results, df)
|
117 |
return eval_df, cv_results, fig_forecast, "Cross validation completed successfully!"
|
|
|
125 |
test_df = df.iloc[train_size:]
|
126 |
sf.fit(train_df)
|
127 |
forecast = sf.predict(h=horizon)
|
128 |
+
evaluation = evaluate(df=forecast, metrics=[bias, made, rmse, mape], models=model_aliases)
|
129 |
eval_df = pd.DataFrame(evaluation).reset_index()
|
130 |
fig_forecast = create_forecast_plot(forecast, df)
|
131 |
return eval_df, forecast, fig_forecast, "Fixed window evaluation completed successfully!"
|