fmegahed commited on
Commit
cda7c58
·
verified ·
1 Parent(s): c5f336a

metrics should not be a string

Browse files
Files changed (1) hide show
  1. app.py +3 -3
app.py CHANGED
@@ -15,7 +15,7 @@ from statsforecast.models import (
15
  )
16
 
17
  from utilsforecast.evaluation import evaluate
18
- from utilsforecast.losses import mae, rmse, bias, mape
19
 
20
  # Function to load and process uploaded CSV
21
  def load_data(file):
@@ -111,7 +111,7 @@ def run_forecast(
111
  try:
112
  if eval_strategy == "Cross Validation":
113
  cv_results = sf.cross_validation(df=df, h=horizon, step_size=step_size, n_windows=num_windows)
114
- evaluation = evaluate(df=cv_results, metrics=['bias', 'mae', 'rmse', 'mape'], models=model_aliases)
115
  eval_df = pd.DataFrame(evaluation).reset_index()
116
  fig_forecast = create_forecast_plot(cv_results, df)
117
  return eval_df, cv_results, fig_forecast, "Cross validation completed successfully!"
@@ -125,7 +125,7 @@ def run_forecast(
125
  test_df = df.iloc[train_size:]
126
  sf.fit(train_df)
127
  forecast = sf.predict(h=horizon)
128
- evaluation = evaluate(df=forecast, metrics=['me', 'mae', 'rmse', 'mape'], models=model_aliases)
129
  eval_df = pd.DataFrame(evaluation).reset_index()
130
  fig_forecast = create_forecast_plot(forecast, df)
131
  return eval_df, forecast, fig_forecast, "Fixed window evaluation completed successfully!"
 
15
  )
16
 
17
  from utilsforecast.evaluation import evaluate
18
+ from utilsforecast.losses import *
19
 
20
  # Function to load and process uploaded CSV
21
  def load_data(file):
 
111
  try:
112
  if eval_strategy == "Cross Validation":
113
  cv_results = sf.cross_validation(df=df, h=horizon, step_size=step_size, n_windows=num_windows)
114
+ evaluation = evaluate(df=cv_results, metrics=[bias, made, rmse, mape], models=model_aliases)
115
  eval_df = pd.DataFrame(evaluation).reset_index()
116
  fig_forecast = create_forecast_plot(cv_results, df)
117
  return eval_df, cv_results, fig_forecast, "Cross validation completed successfully!"
 
125
  test_df = df.iloc[train_size:]
126
  sf.fit(train_df)
127
  forecast = sf.predict(h=horizon)
128
+ evaluation = evaluate(df=forecast, metrics=[bias, made, rmse, mape], models=model_aliases)
129
  eval_df = pd.DataFrame(evaluation).reset_index()
130
  fig_forecast = create_forecast_plot(forecast, df)
131
  return eval_df, forecast, fig_forecast, "Fixed window evaluation completed successfully!"