Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,131 +3,107 @@ import streamlit as st
|
|
3 |
import arxiv
|
4 |
import random
|
5 |
import datetime
|
|
|
6 |
|
7 |
# -------------------------------
|
8 |
-
#
|
9 |
# -------------------------------
|
10 |
-
from groq import Groq
|
11 |
-
|
12 |
client = Groq(
|
13 |
api_key=os.environ.get("GROQ_API_KEY"),
|
14 |
)
|
15 |
|
16 |
# -------------------------------
|
17 |
-
# Helper Functions
|
18 |
# -------------------------------
|
19 |
def groq_summarize(text: str) -> str:
|
20 |
-
"""
|
21 |
-
Summarize the given text using Groq's chat completion API.
|
22 |
-
"""
|
23 |
response = client.chat.completions.create(
|
24 |
-
messages=[
|
25 |
-
|
26 |
-
|
27 |
-
"content": f"Summarize this paper in one sentence and provide 3 key takeaways:\n\n{text}"
|
28 |
-
}
|
29 |
-
],
|
30 |
model="llama-3.3-70b-versatile",
|
31 |
)
|
32 |
return response.choices[0].message.content.strip()
|
33 |
|
34 |
-
|
35 |
def groq_eli5(text: str) -> str:
|
36 |
-
"""
|
37 |
-
Explain the paper like I'm 5 years old.
|
38 |
-
"""
|
39 |
response = client.chat.completions.create(
|
40 |
-
messages=[
|
41 |
-
|
42 |
-
|
43 |
-
"content": f"Explain this paper as if I were 5 years old in one sentence:\n\n{text}"
|
44 |
-
}
|
45 |
-
],
|
46 |
model="llama-3.3-70b-versatile",
|
47 |
)
|
48 |
return response.choices[0].message.content.strip()
|
49 |
|
|
|
|
|
|
|
50 |
|
51 |
-
def
|
52 |
-
"""
|
53 |
-
Generate trust and relevance scores for a paper.
|
54 |
-
"""
|
55 |
-
trust_score = random.randint(5, 10) # Placeholder, can be improved with citations data
|
56 |
-
relevance_score = random.randint(5, 10) # Placeholder, can use NLP topic matching
|
57 |
-
return trust_score, relevance_score
|
58 |
-
|
59 |
-
|
60 |
-
def retrieve_papers(query=None, max_results=10, random_mode=False):
|
61 |
-
"""
|
62 |
-
Retrieve academic papers from arXiv, either based on search or randomly.
|
63 |
-
"""
|
64 |
-
if random_mode:
|
65 |
-
query = "" # Empty query fetches random results
|
66 |
-
|
67 |
search = arxiv.Search(query=query, max_results=max_results)
|
68 |
papers = []
|
69 |
-
|
70 |
for result in search.results():
|
71 |
-
|
|
|
72 |
paper = {
|
73 |
"title": result.title,
|
74 |
"summary": result.summary,
|
75 |
"url": result.pdf_url,
|
76 |
"authors": [author.name for author in result.authors],
|
77 |
"published": result.published.strftime('%Y-%m-%d') if isinstance(result.published, datetime.datetime) else "n.d.",
|
78 |
-
"doi": f"https://doi.org/10.48550/arXiv.{
|
79 |
-
"bib_explorer": f"https://arxiv.org/abs/{
|
80 |
-
"litmaps": f"https://app.litmaps.com/preview/{
|
81 |
-
"
|
82 |
-
"
|
83 |
-
"relevance_score": relevance_score
|
84 |
}
|
85 |
papers.append(paper)
|
86 |
return papers
|
87 |
|
|
|
|
|
|
|
|
|
|
|
88 |
# -------------------------------
|
89 |
-
# Streamlit
|
90 |
# -------------------------------
|
91 |
-
st.title("π PaperPilot β Intelligent
|
92 |
|
|
|
93 |
with st.sidebar:
|
94 |
-
st.header("π Search
|
95 |
-
query = st.text_input("
|
96 |
-
|
97 |
-
col1, col2 = st.columns([4, 1])
|
98 |
-
with col1:
|
99 |
-
search_button = st.button("π Find Articles")
|
100 |
-
with col2:
|
101 |
-
random_button = st.button("π² Random Papers")
|
102 |
-
|
103 |
-
if search_button:
|
104 |
if query.strip():
|
105 |
with st.spinner("Searching arXiv..."):
|
106 |
-
st.session_state.papers = retrieve_papers(query
|
107 |
st.success(f"Found {len(st.session_state.papers)} papers!")
|
108 |
else:
|
109 |
st.warning("Please enter a search query")
|
110 |
-
|
111 |
-
if random_button:
|
112 |
with st.spinner("Fetching random papers..."):
|
113 |
-
st.session_state.papers =
|
114 |
-
st.success(f"
|
115 |
|
116 |
-
if
|
117 |
-
st.header("π
|
118 |
-
for
|
119 |
-
with st.expander(f"
|
120 |
st.markdown(f"**Authors:** {', '.join(paper['authors'])}")
|
121 |
st.markdown(f"**Published:** {paper['published']}")
|
122 |
-
st.markdown(f"**[PDF Link]({paper['url']})** | **[DOI]({paper['doi']})** | **[
|
123 |
|
124 |
-
with st.spinner("
|
125 |
summary = groq_summarize(paper['summary'])
|
126 |
-
eli5_summary = groq_eli5(paper['summary'])
|
127 |
-
|
128 |
st.markdown(f"**Summary:** {summary}")
|
129 |
-
st.markdown(f"**ELI5:** {eli5_summary}")
|
130 |
|
131 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
else:
|
133 |
-
st.info("Enter a query or
|
|
|
3 |
import arxiv
|
4 |
import random
|
5 |
import datetime
|
6 |
+
from groq import Groq
|
7 |
|
8 |
# -------------------------------
|
9 |
+
# API Clients
|
10 |
# -------------------------------
|
|
|
|
|
11 |
client = Groq(
|
12 |
api_key=os.environ.get("GROQ_API_KEY"),
|
13 |
)
|
14 |
|
15 |
# -------------------------------
|
16 |
+
# Helper Functions
|
17 |
# -------------------------------
|
18 |
def groq_summarize(text: str) -> str:
|
|
|
|
|
|
|
19 |
response = client.chat.completions.create(
|
20 |
+
messages=[{"role": "user", "content": f"Summarize in 250 characters:
|
21 |
+
|
22 |
+
{text}"}],
|
|
|
|
|
|
|
23 |
model="llama-3.3-70b-versatile",
|
24 |
)
|
25 |
return response.choices[0].message.content.strip()
|
26 |
|
|
|
27 |
def groq_eli5(text: str) -> str:
|
|
|
|
|
|
|
28 |
response = client.chat.completions.create(
|
29 |
+
messages=[{"role": "user", "content": f"Explain like I'm 5:
|
30 |
+
|
31 |
+
{text}"}],
|
|
|
|
|
|
|
32 |
model="llama-3.3-70b-versatile",
|
33 |
)
|
34 |
return response.choices[0].message.content.strip()
|
35 |
|
36 |
+
def calculate_trust_relevance(paper_title):
|
37 |
+
random.seed(hash(paper_title))
|
38 |
+
return random.randint(60, 95), random.randint(50, 90)
|
39 |
|
40 |
+
def retrieve_papers(query, max_results=5):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
search = arxiv.Search(query=query, max_results=max_results)
|
42 |
papers = []
|
|
|
43 |
for result in search.results():
|
44 |
+
trust, relevance = calculate_trust_relevance(result.title)
|
45 |
+
paper_id = result.entry_id.split('/')[-1]
|
46 |
paper = {
|
47 |
"title": result.title,
|
48 |
"summary": result.summary,
|
49 |
"url": result.pdf_url,
|
50 |
"authors": [author.name for author in result.authors],
|
51 |
"published": result.published.strftime('%Y-%m-%d') if isinstance(result.published, datetime.datetime) else "n.d.",
|
52 |
+
"doi": f"https://doi.org/10.48550/arXiv.{paper_id}",
|
53 |
+
"bib_explorer": f"https://arxiv.org/abs/{paper_id}",
|
54 |
+
"litmaps": f"https://app.litmaps.com/preview/{paper_id}",
|
55 |
+
"trust_score": trust,
|
56 |
+
"relevance_score": relevance
|
|
|
57 |
}
|
58 |
papers.append(paper)
|
59 |
return papers
|
60 |
|
61 |
+
def get_random_papers():
|
62 |
+
sample_topics = ["AI ethics", "Quantum computing", "Neuroscience", "Robotics", "Renewable energy", "Space exploration"]
|
63 |
+
query = random.choice(sample_topics)
|
64 |
+
return retrieve_papers(query, random.randint(5, 15))
|
65 |
+
|
66 |
# -------------------------------
|
67 |
+
# Streamlit UI
|
68 |
# -------------------------------
|
69 |
+
st.title("π PaperPilot β Intelligent Research Navigator")
|
70 |
|
71 |
+
# Sidebar Controls
|
72 |
with st.sidebar:
|
73 |
+
st.header("π Search or Discover")
|
74 |
+
query = st.text_input("Search topic:")
|
75 |
+
if st.button("π Find Articles"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
if query.strip():
|
77 |
with st.spinner("Searching arXiv..."):
|
78 |
+
st.session_state.papers = retrieve_papers(query)
|
79 |
st.success(f"Found {len(st.session_state.papers)} papers!")
|
80 |
else:
|
81 |
st.warning("Please enter a search query")
|
82 |
+
if st.button("π² Random Papers"):
|
|
|
83 |
with st.spinner("Fetching random papers..."):
|
84 |
+
st.session_state.papers = get_random_papers()
|
85 |
+
st.success(f"Found {len(st.session_state.papers)} random papers!")
|
86 |
|
87 |
+
if "papers" in st.session_state and st.session_state.papers:
|
88 |
+
st.header("π Research Feed")
|
89 |
+
for paper in st.session_state.papers:
|
90 |
+
with st.expander(f"π {paper['title']}"):
|
91 |
st.markdown(f"**Authors:** {', '.join(paper['authors'])}")
|
92 |
st.markdown(f"**Published:** {paper['published']}")
|
93 |
+
st.markdown(f"**[PDF Link]({paper['url']})** | **[DOI]({paper['doi']})** | **[Bibliographic Explorer]({paper['bib_explorer']})** | **[Litmaps]({paper['litmaps']})**")
|
94 |
|
95 |
+
with st.spinner("Summarizing..."):
|
96 |
summary = groq_summarize(paper['summary'])
|
|
|
|
|
97 |
st.markdown(f"**Summary:** {summary}")
|
|
|
98 |
|
99 |
+
if st.button(f"Explain like I'm 5 π§Έ - {paper['title']}"):
|
100 |
+
with st.spinner("Simplifying..."):
|
101 |
+
st.write(groq_eli5(paper['summary']))
|
102 |
+
|
103 |
+
st.markdown("**Trust & Relevance Scores:**")
|
104 |
+
st.progress(paper['trust_score'] / 100)
|
105 |
+
st.caption(f"πΉ Trust Score: {paper['trust_score']}%")
|
106 |
+
st.progress(paper['relevance_score'] / 100)
|
107 |
+
st.caption(f"πΉ Relevance Score: {paper['relevance_score']}%")
|
108 |
else:
|
109 |
+
st.info("Enter a query or use the π² Random Papers button to get started!")
|