|
|
|
import os |
|
import re |
|
|
|
|
|
import torch |
|
import numpy as np |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed |
|
from textgames import GAME_NAMES, LEVEL_IDS |
|
from agents import run_with_agent |
|
|
|
|
|
|
|
def set_all_seed(seed=42): |
|
set_seed(seed) |
|
np.random.seed(seed) |
|
torch.manual_seed(seed) |
|
torch.cuda.manual_seed_all(seed) |
|
|
|
|
|
|
|
def _getenv_as_int(attr, default=None): |
|
ret = os.getenv(attr, default) |
|
return None if ret is None else int(ret) |
|
|
|
|
|
GAME_ST, GAME_ED = _getenv_as_int("TG_GAME_ST", None), _getenv_as_int("TG_GAME_ED", None) |
|
LVL_ST, LVL_ED = _getenv_as_int("TG_LEVEL_ST", None), _getenv_as_int("TG_LEVEL_ED", '3') |
|
SID_ST, SID_ED = _getenv_as_int("TG_SID_ST", None), _getenv_as_int("TG_SID_ED", None) |
|
N_TURNS = _getenv_as_int("TG_N_TURNS", 3) |
|
ONE_SHOT = bool(int(os.getenv("TG_ONESHOT", "0"))) |
|
QWEN_SIZE = int(os.getenv("TG_QWEN_SIZE", "32")) |
|
|
|
|
|
|
|
def qwen_postproc(response_txt, game_name, difficulty_level, *args, **kwargs): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return response_txt or "" |
|
|
|
|
|
|
|
def get_qwen_response(texts_batch, game_name, difficulty_level, turn, *args, **kwargs): |
|
|
|
texts_batch = [texts_batch] |
|
messages = [[ |
|
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}, |
|
*[{"role": ("assistant" if i % 2 else "user"), "content": text} for i, text in enumerate(texts)] |
|
] for texts in texts_batch ] |
|
|
|
text_inputs = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
model_inputs = tokenizer([text_inputs], return_tensors="pt").to(model.device) |
|
|
|
model.generation_config.temperature = None |
|
model.generation_config.top_k = None |
|
model.generation_config.top_p = None |
|
generated_ids = model.generate( |
|
**model_inputs, |
|
max_new_tokens=128, |
|
do_sample=False, |
|
) |
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
|
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
return response.strip() |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
fp_out = (f"model_outputs/__runs__/results_qwen2-5-{QWEN_SIZE}b-instruct" |
|
f"{'.1s' if ONE_SHOT else '.zs'}" |
|
f"{'' if GAME_ST is None else f'.{GAME_ST}'}" |
|
f"{'' if LVL_ST is None else f'.{LVL_ST}'}" |
|
f".jsonl") |
|
|
|
set_all_seed() |
|
model_name = f"Qwen/Qwen2.5-{QWEN_SIZE}B-Instruct" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
device_map="auto", |
|
torch_dtype="auto", |
|
) |
|
print(f" > model.dtype: {model.dtype}") |
|
|
|
run_with_agent( |
|
fp_out, |
|
get_qwen_response, |
|
qwen_postproc, |
|
n_turns=N_TURNS, |
|
game_names_list=GAME_NAMES[GAME_ST:GAME_ED], |
|
level_ids_list=LEVEL_IDS[LVL_ST:LVL_ED], |
|
sid_indices=(list(map(lambda r: f"session_{r:04}", range(SID_ST or 0, SID_ED or 1000))) |
|
if SID_ST or SID_ED else None), |
|
prepend_example=ONE_SHOT, |
|
|
|
) |
|
|