textgames / agents /dsr1_distill.py
fhudi's picture
Upload folder using huggingface_hub
8bf595d verified
#%%
import os
import re
#%%
import torch
import numpy as np
from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed
from textgames import THE_GAMES, GAME_NAMES, LEVEL_IDS
from agents import run_with_agent
#%%
def set_all_seed(seed=42):
set_seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
#%%
def _getenv_as_int(attr, default=None):
ret = os.getenv(attr, default)
return None if ret is None else int(ret)
GAME_ST, GAME_ED = _getenv_as_int("TG_GAME_ST", None), _getenv_as_int("TG_GAME_ED", None)
LVL_ST, LVL_ED = _getenv_as_int("TG_LEVEL_ST", None), _getenv_as_int("TG_LEVEL_ED", '3')
SID_ST, SID_ED = _getenv_as_int("TG_SID_ST", None), _getenv_as_int("TG_SID_ED", None)
N_TURNS = _getenv_as_int("TG_N_TURNS", 1)
ONE_SHOT = bool(int(os.getenv("TG_ONESHOT", "0")))
MAX_NEW_TOKENS = _getenv_as_int("TG_MAX_NEW_TOKENS", 12000)
DSR1_SIZE = os.getenv("TG_DSR1_SIZE", "14") # {1.5, 7, 8, 14, 32, 70}
DSR1_NAME = {
"1.5": "Qwen-1.5",
"7": "Qwen-7",
"8": "Llama-8",
"14": "Qwen-14",
"32": "Qwen-32",
"70": "Llama-70",
}
#%%
def dsr1_postproc(response_txt_batch, *args, **kwargs):
response_txt_batch = [response_txt_batch]
ret = []
for response_txt in response_txt_batch:
_match = None
for pat in [
re.compile(r'\\boxed\{([\s\S]*)}'),
re.compile(r'</think>\n([\s\S]*)$'),
re.compile(r'^```\n?([^`]*)\n?```'),
]:
matches = pat.search(response_txt)
if matches:
_match = matches.group(1).strip()
break
if _match is not None:
ret.append(_match)
else:
ret.append(response_txt[:256].strip() if response_txt else "")
return ret[0]
#%%
def get_dsr1_response(texts_batch, *args, **kwargs):
# global model, tokenizer
texts_batch = [texts_batch]
for texts in texts_batch:
if len(texts) > 1 and texts[1].startswith('Correct guess.'):
texts[1] = f"\\boxed{{{texts[1]}}}"
messages = [
[
{"role": "user",
"content": f"{text}\nPlease reason step by step, and put your final answer within \\boxed{{}} as plain text."}
if i % 2 == 0 else
{"role": "assistant", "content": {text}}
for i, text in enumerate(texts)
]
for texts in texts_batch
]
text_inputs = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer(text_inputs, return_tensors="pt", add_special_tokens=False).to(model.device)
output_ids = model.generate(
**model_inputs,
max_new_tokens=MAX_NEW_TOKENS,
do_sample=False,
pad_token_id=tokenizer.eos_token_id,
)
generated_ids = [
_output_ids[len(input_ids):] for input_ids, _output_ids in zip(model_inputs.input_ids, output_ids)
]
response = [r.strip() for r in tokenizer.batch_decode(generated_ids, skip_special_tokens=True)]
return response[0]
#%%
# response = get_dsr1_response(texts)
# print(dsr1_postproc(response))
#%%
if __name__ == "__main__":
fp_out = (f"model_outputs/__runs__/results_deepseek-r1-distill-{DSR1_SIZE}b"
f"{'.1s' if ONE_SHOT else '.zs'}"
f"{'' if GAME_ST is None else f'.{GAME_ST}'}"
f"{'' if LVL_ST is None else f'.{LVL_ST}'}"
f".jsonl")
set_all_seed()
model_name = f"deepseek-ai/DeepSeek-R1-Distill-{DSR1_NAME[DSR1_SIZE]}B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map="auto",
torch_dtype="auto",
)
model.generation_config.temperature = None
model.generation_config.top_k = None
model.generation_config.top_p = None
run_with_agent(
fp_out,
get_dsr1_response,
dsr1_postproc,
n_turns=N_TURNS,
game_names_list=GAME_NAMES[GAME_ST:GAME_ED],
level_ids_list=LEVEL_IDS[LVL_ST:LVL_ED],
sid_indices=(list(map(lambda r: f"session_{r:04}", range(SID_ST or 0, SID_ED or 1000)))
if SID_ST or SID_ED else None),
prepend_example=ONE_SHOT,
# remove_if_output_file_exist=False,
assistant_uses_raw_response=False,
)