File size: 4,878 Bytes
8bf595d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
#%%
import os
import re

#%%
import os
import json
import torch
import numpy as np
from pathlib import Path
from transformers import set_seed
from textgames import GAME_NAMES, LEVEL_IDS, game_filename
from agents import run_with_agent

#%%
def set_all_seed(seed=42):
    set_seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)


#%%
def _getenv_as_int(attr, default=None):
    ret = os.getenv(attr, default)
    return None if ret is None else int(ret)


GAME_ST, GAME_ED = _getenv_as_int("TG_GAME_ST", None), _getenv_as_int("TG_GAME_ED", None)
LVL_ST, LVL_ED = _getenv_as_int("TG_LEVEL_ST", None), _getenv_as_int("TG_LEVEL_ED", '3')
SID_ST, SID_ED = _getenv_as_int("TG_SID_ST", None), _getenv_as_int("TG_SID_ED", None)
N_TURNS = _getenv_as_int("TG_N_TURNS", 1)
ONE_SHOT = bool(int(os.getenv("TG_ONESHOT", "0")))
GPT_MODEL = os.getenv("TG_GPT_MODEL", "")
# MAX_NEW_TOKENS = _getenv_as_int("TG_MAX_NEW_TOKENS", 12000)


#%%
def preload_responses():
    responses_all = dict()
    for _turn in range(1, N_TURNS+1):
        fp = os.getenv(
            f"TG_GPT_OUTPUT_FILE_TURN_{_turn}",
            (f"model_outputs/__runs__/chatgpt_4o_mini_results/raw/batch_output_chatgpt-{GPT_MODEL}_turn{_turn}"
             f"{'.1s' if ONE_SHOT else '.zs'}.jsonl")
        )
        if not Path(fp).exists():
            if _turn < N_TURNS:
                print(f"  batch_output turn {_turn} is not available. path: \"{fp}\"")
            break
        with open(fp, "r", encoding="utf8") as i:
            data = [json.loads(line) for line in i]
        for d in data:
            sid, g = d['custom_id'].rsplit('-', 2)[-2:]
            msg = d['response']['body']['choices'][0]['message']
            responses_all.setdefault((g, _turn), dict())[sid] = msg['content']
            responses_all[g, _turn][sid] = msg['content']
            # assert msg['role'] == 'assistant'
            # assert msg['refusal'] is None
        # assert sum(len(v) for v in responses_all.values()) == 24000
    return responses_all
RESPONSES_ALL = preload_responses()
print(f"len(RESPONSES_ALL) = {len(RESPONSES_ALL)}")


#%%
def gpt_postproc(response_txt_batch, *args, **kwargs):
    response_txt_batch = [response_txt_batch]
    ret = []
    for response_txt in response_txt_batch:
        if response_txt is None:
            ret.append(response_txt)
            continue
        cur = None
        for pat in [
            re.compile(r'^```\n?([^`]*)\n?```'),
            # re.compile(r'\*\*\"?([^\"*]*)\"?\*\*'),
            re.compile(r'((.|\n)*)\n\nExplanation:\n'),
        ]:
            match = pat.search(response_txt)
            if match:
                cur = match.group(1).strip()
                # .replace(" ", "")
                break
        ret.append(cur if cur else response_txt)
    return ret[0]


#%%
def get_gpt_response(texts, game_name, difficulty_level, turn, *args, **kwargs):
    # global model, tokenizer
    sid = kwargs['sid']    # sid must be fed as params
    messages = [
        ({"role": "user", "content": text}
         if i % 2 == 0 else
         {"role": "assistant", "content": text})
        for i, text in enumerate(texts)
    ]

    response = None
    responses_all = RESPONSES_ALL.get((f"{game_filename(game_name)}_{difficulty_level}", turn), {})
    if responses_all:
        response = responses_all[sid]
    elif fp_next := os.getenv("TG_GPT_NEXTTURN_OUTPUT_FILE", None):
        with open(fp_next, "a", encoding="utf8") as o:
            o.write(json.dumps({
                'custom_id': f"{sid}-{game_filename(game_name)}_{difficulty_level}",
                "method": "POST", "url": "/v1/chat/completions",
                "body": {
                    "model": "gpt-4o-mini-2024-07-18",
                    "max_completion_tokens": 200,
                    # "messages": [],
                    'messages': messages,
                    "seed": 42,
                    "temperature": 0,
                }
            }))
            o.write("\n")

    return response


#%%
if __name__ == "__main__":
    fp_out = (f"model_outputs/__runs__/chatgpt_4o_mini_results/process/results_chatgpt-{GPT_MODEL}"
              f"{'.1s' if ONE_SHOT else '.zs'}"
              f"{'' if GAME_ST is None else f'.{GAME_ST}'}"
              f"{'' if LVL_ST is None else f'.{LVL_ST}'}"
              f".jsonl")

    set_all_seed()

    run_with_agent(
        fp_out,
        get_gpt_response,
        gpt_postproc,
        n_turns=N_TURNS,
        game_names_list=GAME_NAMES[GAME_ST:GAME_ED],
        level_ids_list=LEVEL_IDS[LVL_ST:LVL_ED],
        sid_indices=(list(map(lambda r: f"session_{r:04}", range(SID_ST or 0, SID_ED or 1000)))
                     if SID_ST or SID_ED else None),
        prepend_example=ONE_SHOT,
        # remove_if_output_file_exist=False,
        assistant_uses_raw_response=False,
    )