Spaces:
Sleeping
Sleeping
File size: 10,955 Bytes
09bfabc e71afca a7c0739 e71afca 09bfabc bef7a31 09bfabc b7f39b9 09bfabc b7f39b9 09bfabc d411fb6 b7f39b9 09bfabc 927b081 d0e9ec9 26f0dbd 78723a9 09bfabc e939ab4 09bfabc 336b010 09bfabc 336b010 09bfabc 97a6e64 09bfabc e939ab4 09bfabc d8306ac 09bfabc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
def main():
"""
Creates a Streamlit web app that classifies a given body of text as either human-made or AI-generated,
using a pre-trained model.
"""
import streamlit as st
import numpy as np
import joblib
import string
import time
import scipy
import spacy
import re
from transformers import AutoTokenizer
import torch
from eli5.lime import TextExplainer
from eli5.lime.samplers import MaskingTextSampler
import eli5
import shap
from custom_models import HF_DistilBertBasedModelAppDocs, HF_BertBasedModelAppDocs
# Initialize Spacy
nlp = spacy.load("en_core_web_sm")
# device to run DL model
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def format_text(text: str) -> str:
"""
This function takes a string as input and returns a formatted version of the string.
The function replaces specific substrings in the input string with empty strings,
converts the string to lowercase, removes any leading or trailing whitespace,
and removes any punctuation from the string.
"""
text = nlp(text)
text = " ".join([token.text for token in text if token.ent_type_ not in ["PERSON", "DATE"]])
pattern1 = r'f\d+'
pattern2 = r"\b[A-Za-z]+\d+\b"
pattern3 = r'\[(.*?)\]'
text = re.sub(pattern1, "", text)
text = re.sub(pattern2, "", text)
text = re.sub(pattern3, "", text)
return text.replace("REDACTED", "").lower().replace(" "," ").replace("[Name]", "").replace("[your name]", "").replace("\n your name", "").\
replace("dear admissions committee,", "").replace("sincerely,","").\
replace("[university's name]","fordham").replace("dear sir/madam,","").\
replace("โ statement of intent ","").\
replace('program: master of science in data analytics name of applicant: ',"").\
replace("data analytics", "data science").replace("| \u200b","").\
replace("m.s. in data science at lincoln center ","").\
translate(str.maketrans('', '', string.punctuation)).strip().lstrip()
# Define the function to classify text
def nb_lr(model, text):
# Clean and format the input text
text = format_text(text)
# Predict using either LR or NB and get prediction probability
prediction = model.predict([text]).item()
predict_proba = round(model.predict_proba([text]).squeeze()[prediction].item(),4)
return prediction, predict_proba
def torch_pred(tokenizer, model, text):
# DL models (BERT/DistilBERT based models)
cleaned_text_tokens = tokenizer([text], padding='max_length', max_length=512, truncation=True)
with torch.inference_mode():
input_ids, att = cleaned_text_tokens["input_ids"], cleaned_text_tokens["attention_mask"]
input_ids = torch.tensor(input_ids).to(device)
attention_mask = torch.tensor(att).to(device)
logits = model(input_ids=input_ids, attention_mask=attention_mask)
_, prediction = torch.max(logits, 1)
prediction = prediction.item()
predict_proba = round(torch.softmax(logits, 1).cpu().squeeze().tolist()[prediction],4)
return prediction, predict_proba
def pred_str(prediction):
# Map the predicted class to string output
if prediction == 0:
return "Human-made ๐คทโโ๏ธ๐คทโโ๏ธ"
else:
return "Generated with AI ๐ฆพ"
@st.cache(allow_output_mutation=True, suppress_st_warning=True)
def load_tokenizer(option):
if option == "BERT-based model":
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased", padding='max_length', max_length=512, truncation=True)
else:
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased", padding='max_length', max_length=512, truncation=True)
return tokenizer
@st.cache(allow_output_mutation=True, suppress_st_warning=True)
def load_model(option):
if option == "BERT-based model":
model = HF_BertBasedModelAppDocs.from_pretrained("ferdmartin/HF_BertBasedModelAppDocs2").to(device)
else:
model = HF_DistilBertBasedModelAppDocs.from_pretrained("ferdmartin/HF_DistilBertBasedModelAppDocs2").to(device)
return model
# Streamlit app:
models_available = {"Logistic Regression":"models/baseline_model_lr_longer.joblib",
"Naive Bayes": "models/baseline_model_nb_longer.joblib",
"DistilBERT-based model (BERT light)": "ferdmartin/HF_DistilBertBasedModelAppDocs",
"BERT-based model": "ferdmartin/HF_BertBasedModelAppDocs"
}
st.set_page_config(page_title="AI/Human GradAppDocs", page_icon="๐ค", layout="wide")
st.title("Academic Application Document Classifier")
st.header("Is it human-made ๐ or Generated with AI ๐ค ? ")
st.markdown('AI-generated content has reached an unprecedented level of realism. The models on this website focus on identifying AI-generated application materials, such as Statements of Intent (SOI) and Letters of Recommendation (LOR). These models were trained using real-world SOIs and LORs, alongside their AI counterparts generated through prompts crafted using information from actual applications. An example of such prompts is as follows:')
st.markdown('''"Write a statement of intent for a master's in Data Science at Fordham University. My undergraduate degree is in Mathematics, and my GPA is 3.45. I possess proficiency in python, java, matlab, software, calculus, and linear algebra."''')
st.markdown("It's worth noting that these models are not trained to detect AI-enhanced text originating from human-authored drafts. Using tools like ChatGPT for document revision may be acceptable for some admissions committees, as they combine human creativity with AI language proficiency. However, our upcoming research will focus on identifying AI-modified texts, including paraphrasing, to ensure transparency and trustworthiness across various applications.")
# Check the model to use
def restore_prediction_state():
if "prediction" in st.session_state:
del st.session_state.prediction
option = st.selectbox("Select a model to use:", models_available, on_change=restore_prediction_state)
# Load the selected trained model
if option in ("BERT-based model", "DistilBERT-based model (BERT light)"):
tokenizer = load_tokenizer(option)
model = load_model(option)
else:
model = joblib.load(models_available[option])
text = st.text_area("Enter either a statement of intent or a letter of recommendation:")
#Hide footer "made with streamlit"
hide_st_style = """
<style>
footer {visibility: hidden;}
header {visibility: hidden;}
</style>
"""
st.markdown(hide_st_style, unsafe_allow_html=True)
# Use model
if st.button("Let's check this text!"):
if text.strip() == "":
st.error("Please enter some text")
else:
with st.spinner("Wait for the magic ๐ช๐ฎ"):
# Use model
if option in ("Naive Bayes", "Logistic Regression"):
prediction, predict_proba = nb_lr(model, text)
st.session_state["sklearn"] = True
else:
prediction, predict_proba = torch_pred(tokenizer, model, format_text(text))
st.session_state["torch"] = True
# Store the result in session state
st.session_state["color_pred"] = "blue" if prediction == 0 else "red"
prediction = pred_str(prediction)
st.session_state["prediction"] = prediction
st.session_state["predict_proba"] = predict_proba
st.session_state["text"] = text
# Print result
st.markdown(f"I think this text is: **:{st.session_state['color_pred']}[{st.session_state['prediction']}]** (Confidence: {st.session_state['predict_proba'] * 100}%)")
elif "prediction" in st.session_state:
# Display the stored result if available
st.markdown(f"I think this text is: **:{st.session_state['color_pred']}[{st.session_state['prediction']}]** (Confidence: {st.session_state['predict_proba'] * 100}%)")
if st.button("Model Explanation"):
# Check if there's text in the session state
if "text" in st.session_state and "prediction" in st.session_state:
if option in ("Naive Bayes", "Logistic Regression"):
with st.spinner('Wait for it ๐ญ...'):
explainer = TextExplainer(sampler=MaskingTextSampler())
explainer.fit(st.session_state["text"], model.predict_proba)
html = eli5.format_as_html(explainer.explain_prediction(target_names=["Human", "AI"]))
st.markdown('<span style="color:green"><strong>Green:</strong> Contributes to decision | </span><span style="color:red"><strong>Red:</strong> Opposite</span>', unsafe_allow_html=True)
else:
with st.spinner('Wait for it ๐ญ... BERT-based model explanations take around 4-10 minutes. In case you want to abort, refresh the page.'):
# TORCH EXPLAINER PRED FUNC (USES logits)
def f(x):
tv = torch.tensor([tokenizer.encode(v, padding='max_length', max_length=512, truncation=True) for v in x])
outputs = model(tv).detach().cpu().numpy()
scores = (np.exp(outputs).T / np.exp(outputs).sum(-1)).T
val = scipy.special.logit(scores[:,1]) # use one vs rest logit units
return val
# build an explainer using a token masker
explainer = shap.Explainer(f, tokenizer)
shap_values = explainer([st.session_state["text"]], fixed_context=1)
html = shap.plots.text(shap_values, display=False)
st.markdown('<span style="color:blue"><strong>Blue:</strong> Contributes to "human" | </span><span style="color:red"><strong>Red:</strong> Contributes to "AI"</span>', unsafe_allow_html=True)
# Render HTML
st.components.v1.html(html, height=500, scrolling = True)
else:
st.error("Please enter some text and click 'Let's check!' before requesting an explanation.")
if __name__ == "__main__":
main() |