Spaces:
Running
on
Zero
Running
on
Zero
File size: 51,881 Bytes
9cc6120 9109509 9cc6120 a075bb3 9cc6120 9109509 5a9e88a 212d06b 9cc6120 590f42f 1457419 9cc6120 7ed0603 20e9445 9cc6120 d2680fa a549649 15efe4a 86f7d0b 9cc6120 1ef2970 348c664 15efe4a dedc4f1 549219e dedc4f1 77e00bd 590f42f dedc4f1 549219e dedc4f1 549219e dedc4f1 86f7d0b 8a563d0 712897d 590f42f 86f7d0b dedc4f1 590f42f 549219e e39f857 549219e e39f857 549219e e39f857 3260867 e39f857 549219e e39f857 ec4667c 549219e e39f857 549219e 3260867 e39f857 549219e 3260867 d2680fa 3260867 15efe4a 94ff6a1 15efe4a 94ff6a1 15efe4a 94ff6a1 15efe4a 94ff6a1 15efe4a 94ff6a1 15efe4a 94ff6a1 15efe4a 94ff6a1 15efe4a 94ff6a1 15efe4a 94ff6a1 15efe4a 3260867 e39f857 3260867 590f42f 3260867 9cc6120 dedc4f1 9cc6120 32e1e65 6ea04d8 baee2b2 15efe4a baee2b2 6ea04d8 5a9e88a fe81470 baee2b2 6ea04d8 baee2b2 6ea04d8 104bc54 9cc6120 590f42f 1dfdd1b 348c664 1dfdd1b 9cc6120 d39610d 195ed03 d39610d 195ed03 d39610d 9cc6120 195ed03 9cc6120 c39cd57 9cc6120 c39cd57 9cc6120 85e41fb 7ccbe37 dedc4f1 7ccbe37 8880b78 9109509 7ccbe37 9109509 8880b78 9109509 dedc4f1 104bc54 348c664 1457419 15efe4a 549219e 590f42f 90748c8 590f42f 90748c8 e39f857 90748c8 590f42f e39f857 590f42f afc8109 14b2ad0 590f42f e39f857 549219e 590f42f 549219e 104bc54 348c664 dedc4f1 549219e e5ddfb2 590f42f 15efe4a 590f42f 2aa1893 590f42f 15efe4a 590f42f e39f857 9cc6120 9109509 8880b78 9109509 9cc6120 104bc54 9cc6120 8880b78 9cc6120 62aa801 1ef2970 8880b78 94ff6a1 9cc6120 94c1e6b 9cc6120 8880b78 9cc6120 94c1e6b 9cc6120 8880b78 dedc4f1 8880b78 9109509 104bc54 8880b78 9109509 8880b78 16f921a dedc4f1 16f921a dedc4f1 16f921a dedc4f1 2aa1893 9109509 8880b78 9109509 dedc4f1 8880b78 20e9445 8880b78 dedc4f1 8880b78 9109509 dedc4f1 9109509 dedc4f1 2aa1893 15efe4a 9109509 8880b78 104bc54 a549649 15efe4a a549649 94ff6a1 a549649 94ff6a1 a549649 94ff6a1 a549649 94ff6a1 a549649 104bc54 dedc4f1 a549649 7ccbe37 26d56ee 9cc6120 85e41fb 16f921a 9cc6120 16f921a 9cc6120 dedc4f1 7ccbe37 9cc6120 a549649 94ff6a1 26d56ee 9cc6120 463e428 3260867 e39f857 549219e 3260867 e39f857 3260867 e39f857 463e428 e39f857 549219e 3260867 e39f857 7ca0870 549219e 463e428 98e1a6e f587c01 ccd40e2 f587c01 98e1a6e ccd40e2 98e1a6e ccd40e2 98e1a6e de86b59 f587c01 98e1a6e f587c01 ccd40e2 98e1a6e ccd40e2 98e1a6e f587c01 ccd40e2 de86b59 f587c01 ccd40e2 f587c01 ccd40e2 f587c01 212d06b f587c01 ccd40e2 212d06b ccd40e2 212d06b f587c01 ccd40e2 212d06b ccd40e2 212d06b 9221d1e 212d06b ccd40e2 212d06b ccd40e2 212d06b ccd40e2 212d06b de86b59 8880b78 ba5ed41 16f921a 8880b78 35d154e 463e428 114b14a ba5ed41 114b14a ba5ed41 196cc92 114b14a 196cc92 114b14a 463e428 1bed0da ba5ed41 1bed0da ba5ed41 1bed0da 0179b81 ba5ed41 0179b81 ba5ed41 0179b81 ba5ed41 0179b81 ba5ed41 0179b81 ba5ed41 0179b81 ba5ed41 0179b81 ba5ed41 0179b81 ba5ed41 0179b81 becdb13 ba5ed41 becdb13 ba5ed41 becdb13 a549649 8880b78 f3b9331 1ef2970 f3b9331 8911cd4 f3b9331 8911cd4 26d56ee 15efe4a 26d56ee 15efe4a 94ff6a1 15efe4a 94ff6a1 15efe4a 8911cd4 f3b9331 a549649 94ff6a1 3f49e61 20e9445 aac80e9 b1155b9 aac80e9 b1155b9 aac80e9 a431110 aac80e9 a431110 1bed0da aac80e9 32e1e65 aac80e9 0179b81 aac80e9 94ff6a1 15efe4a f3b9331 15efe4a 94ff6a1 15efe4a 94ff6a1 15efe4a 94ff6a1 15efe4a 94ff6a1 15efe4a 94ff6a1 15efe4a 94ff6a1 15efe4a 5cafd31 94ff6a1 f3b9331 94ff6a1 f3b9331 27df61b 94ff6a1 15efe4a f3b9331 15efe4a 27df61b 15efe4a a549649 aac80e9 faecac3 aac80e9 7ca0870 01c3274 463e428 9cc6120 463e428 dedc4f1 ab8585f 6ddb3ed ab8585f 1ef2970 5f0717e aecd0a1 5f0717e ab8585f 6ddb3ed ab8585f 5f0717e ab8585f 6ddb3ed ab8585f 8b9f557 9bee81e 8b9f557 ab8585f 5f0717e 1ef2970 259b6f1 463e428 259b6f1 4b0859f 259b6f1 4b0859f 463e428 9cc6120 aac80e9 6ea04d8 32e1e65 6ea04d8 aac80e9 6ea04d8 9109509 26d56ee 81490b8 26d56ee a549649 4b0859f a549649 076b4f2 9cc6120 dedc4f1 9cc6120 104bc54 9109509 dedc4f1 8880b78 104bc54 dedc4f1 104bc54 8880b78 104bc54 dedc4f1 9cc6120 dedc4f1 9cc6120 dedc4f1 9cc6120 dedc4f1 15efe4a 7ca0870 aac80e9 26d56ee e39f857 15efe4a 94ff6a1 a549649 94ff6a1 a549649 88bed01 94ff6a1 9cc6120 26d56ee 5a9e88a a549649 94ff6a1 26d56ee a549649 26d56ee a549649 9cc6120 463e428 aac80e9 463e428 98e1a6e 94ff6a1 98e1a6e 9753033 a549649 94ff6a1 a549649 9cc6120 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 |
import os
import random
import uuid
import smtplib
import ssl
from email.mime.text import MIMEText
from email.mime.multipart import MIMEMultipart
from base64 import b64encode
from datetime import datetime
from mimetypes import guess_type
from pathlib import Path
from typing import Optional
import json
from sendgrid import SendGridAPIClient
from sendgrid.helpers.mail import Mail
import spaces
import spaces
import gradio as gr
from feedback import save_feedback, scheduler
from gradio.components.chatbot import Option
from huggingface_hub import InferenceClient
from pandas import DataFrame
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
import threading
from collections import defaultdict
from datasets import load_dataset
BASE_MODEL = os.getenv("MODEL", "google/gemma-3-12b-pt")
ZERO_GPU = (
bool(os.getenv("ZERO_GPU", False)) or True
if str(os.getenv("ZERO_GPU")).lower() == "true"
else False
)
TEXT_ONLY = (
bool(os.getenv("TEXT_ONLY", False)) or True
if str(os.getenv("TEXT_ONLY")).lower() == "true"
else False
)
# os.environ["HF_DATASETS_CACHE"] = "/data/datasets_cache"
# # caches dataset after first download
# dataset = load_dataset("feel-fl/feel-feedback")
def create_inference_client(
model: Optional[str] = None, base_url: Optional[str] = None
) -> InferenceClient | dict:
"""Create an InferenceClient instance with the given model or environment settings.
This function will run the model locally if ZERO_GPU is set to True.
This function will run the model locally if ZERO_GPU is set to True.
Args:
model: Optional model identifier to use. If not provided, will use environment settings.
base_url: Optional base URL for the inference API.
Returns:
Either an InferenceClient instance or a dictionary with pipeline and tokenizer
"""
if ZERO_GPU:
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
model = AutoModelForCausalLM.from_pretrained(BASE_MODEL, load_in_8bit=False)
return {
"pipeline": pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=2000,
),
"tokenizer": tokenizer
}
else:
return InferenceClient(
token=os.getenv("HF_TOKEN"),
model=model if model else (BASE_MODEL if not base_url else None),
base_url=base_url,
)
CLIENT = create_inference_client()
def get_persistent_storage_path(filename: str) -> tuple[Path, bool]:
"""Check if persistent storage is available and return the appropriate path.
Args:
filename: The name of the file to check/create
Returns:
A tuple containing (file_path, is_persistent)
"""
persistent_path = Path("/data") / filename
local_path = Path(__file__).parent / filename
# Check if persistent storage is available and writable
use_persistent = False
if Path("/data").exists() and Path("/data").is_dir():
try:
# Test if we can write to the directory
test_file = Path("/data/write_test.tmp")
test_file.touch()
test_file.unlink() # Remove the test file
use_persistent = True
except (PermissionError, OSError):
print("Persistent storage exists but is not writable, falling back to local storage")
use_persistent = False
return (persistent_path if use_persistent else local_path, use_persistent)
def load_languages() -> dict[str, str]:
"""Load languages from JSON file or persistent storage"""
languages_path, use_persistent = get_persistent_storage_path("languages.json")
local_path = Path(__file__).parent / "languages.json"
# If persistent storage is available but file doesn't exist yet, copy the local file to persistent storage
if use_persistent and not languages_path.exists():
try:
if local_path.exists():
import shutil
shutil.copy(local_path, languages_path)
print(f"Copied languages to persistent storage at {languages_path}")
else:
with open(languages_path, "w", encoding="utf-8") as f:
json.dump({"English": "You are a helpful assistant."}, f, ensure_ascii=False, indent=2)
print(f"Created new languages file in persistent storage at {languages_path}")
except Exception as e:
print(f"Error setting up persistent storage: {e}")
languages_path = local_path # Fall back to local path if any error occurs
if not languages_path.exists() and local_path.exists():
languages_path = local_path
if languages_path.exists():
with open(languages_path, "r", encoding="utf-8") as f:
return json.load(f)
else:
default_languages = {"English": "You are a helpful assistant."}
return default_languages
LANGUAGES = load_languages()
def update_language_counts_from_dataset():
"""update language data points count from the dataset"""
data_file, use_persistent = get_persistent_storage_path("language_data_points.json")
if data_file.exists():
with open(data_file, "r", encoding="utf-8") as f:
try:
data = json.load(f)
except json.JSONDecodeError:
print("error reading data file. Creating new data.")
data = {}
else:
data = {}
cache_dir, _ = get_persistent_storage_path("datasets_cache")
os.environ["HF_DATASETS_CACHE"] = str(cache_dir)
try:
# load the dataset (cached after first download - note that this might need to be changed because
# we dont want it to only refer to some old cached version if there have been updates since)
print("loading dataset from HuggingFace...")
dataset = load_dataset("feel-fl/feel-feedback")
train_dataset = dataset["train"]
df = train_dataset.to_pandas()
if 'language' in df.columns:
language_counts = df['language'].value_counts().to_dict()
for lang, count in language_counts.items():
data[lang] = count
print(f"Updated counts from dataset for {len(language_counts)} languages")
else:
print("Warning: No 'language' column found in the dataset.")
print("Available columns:", df.columns.tolist())
except Exception as e:
print(f"Error updating from dataset: {e}")
with open(data_file, "w", encoding="utf-8") as f:
json.dump(data, f, ensure_ascii=False, indent=2)
return data
USER_AGREEMENT = """
You have been asked to participate in a research study conducted by Lingo Lab from the Computer Science and Artificial Intelligence Laboratory at the Massachusetts Institute of Technology (M.I.T.), together with huggingface.
The purpose of this study is the collection of multilingual human feedback to improve language models. As part of this study you will interat with a language model in a langugage of your choice, and provide indication to wether its reponses are helpful or not.
Your name and personal data will never be recorded. You may decline further participation, at any time, without adverse consequences.There are no foreseeable risks or discomforts for participating in this study. Note participating in the study may pose risks that are currently unforeseeable. If you have questions or concerns about the study, you can contact the researchers at [email protected]. If you have any questions about your rights as a participant in this research (E-6610), feel you have been harmed, or wish to discuss other study-related concerns with someone who is not part of the research team, you can contact the M.I.T. Committee on the Use of Humans as Experimental Subjects (COUHES) by phone at (617) 253-8420, or by email at [email protected].
Clicking on the next button at the bottom of this page indicates that you are at least 18 years of age and willingly agree to participate in the research voluntarily.
"""
def add_user_message(history, message):
if isinstance(message, dict) and "files" in message:
for x in message["files"]:
history.append({"role": "user", "content": {"path": x}})
if message["text"] is not None:
history.append({"role": "user", "content": message["text"]})
else:
history.append({"role": "user", "content": message})
return history, gr.Textbox(value=None, interactive=False)
def format_system_message(language: str):
system_message = [
{
"role": "system",
"content": LANGUAGES.get(language, LANGUAGES["English"]),
},
{
"role": "user",
"content": f"Start by asking me a question in {language}."
}
]
response = call_pipeline(system_message)
new_system_message = [
{
"role": "system",
"content": LANGUAGES.get(language, LANGUAGES["English"]),
},
{
"role": "assistant",
"content": response
}
]
return new_system_message
def format_history_as_messages(history: list):
messages = []
current_role = None
current_message_content = []
if TEXT_ONLY:
for entry in history:
messages.append({"role": entry["role"], "content": entry["content"]})
return messages
if TEXT_ONLY:
for entry in history:
messages.append({"role": entry["role"], "content": entry["content"]})
return messages
for entry in history:
content = entry["content"]
if entry["role"] != current_role:
if current_role is not None:
messages.append(
{"role": current_role, "content": current_message_content}
)
current_role = entry["role"]
current_message_content = []
if isinstance(content, tuple): # Handle file paths
for temp_path in content:
if space_host := os.getenv("SPACE_HOST"):
url = f"https://{space_host}/gradio_api/file%3D{temp_path}"
else:
url = _convert_path_to_data_uri(temp_path)
current_message_content.append(
{"type": "image_url", "image_url": {"url": url}}
)
elif isinstance(content, str): # Handle text
current_message_content.append({"type": "text", "text": content})
if current_role is not None:
messages.append({"role": current_role, "content": current_message_content})
return messages
def _convert_path_to_data_uri(path) -> str:
mime_type, _ = guess_type(path)
with open(path, "rb") as image_file:
data = image_file.read()
data_uri = f"data:{mime_type};base64," + b64encode(data).decode("utf-8")
return data_uri
def _is_file_safe(path) -> bool:
try:
return Path(path).is_file()
except Exception:
return ""
def _process_content(content) -> str | list[str]:
if isinstance(content, str) and _is_file_safe(content):
return _convert_path_to_data_uri(content)
elif isinstance(content, list) or isinstance(content, tuple):
return _convert_path_to_data_uri(content[0])
return content
def _process_rating(rating) -> int:
if isinstance(rating, str):
return 0
elif isinstance(rating, int):
return rating
else:
raise ValueError(f"Invalid rating: {rating}")
def add_fake_like_data(
history: list,
conversation_id: str,
session_id: str,
language: str,
liked: bool = False,
) -> None:
data = {
"index": len(history) - 1,
"value": history[-1],
"liked": liked,
}
_, dataframe = wrangle_like_data(
gr.LikeData(target=None, data=data), history.copy()
)
submit_conversation(
dataframe=dataframe,
conversation_id=conversation_id,
session_id=session_id,
language=language,
)
@spaces.GPU
def call_pipeline(messages: list):
"""Call the appropriate model pipeline based on configuration"""
if ZERO_GPU:
tokenizer = CLIENT["tokenizer"]
# Ensure messages follow the proper alternating pattern
formatted_messages = []
prev_role = None
for msg in messages:
role = msg.get("role", "")
content = msg.get("content", "")
# Skip empty messages
if not content.strip():
continue
# Enforce alternating pattern
if role == prev_role:
# If same role repeats, combine with previous message or skip
continue
# Only allow "user" and "assistant" roles
if role not in ["user", "assistant"]:
# Convert to proper role or skip
continue
formatted_messages.append(msg)
prev_role = role
# Ensure we start with user message
if formatted_messages and formatted_messages[0]["role"] != "user":
formatted_messages = formatted_messages[1:]
# Now use the properly formatted messages
formatted_prompt = tokenizer.apply_chat_template(
formatted_messages, # Use the fixed messages
tokenize=False,
add_generation_prompt=True
)
response = CLIENT["pipeline"](
formatted_prompt,
clean_up_tokenization_spaces=False,
max_length=2000,
return_full_text=False,
temperature=1.0,
do_sample=True,
)
return response[0]["generated_text"]
else:
response = CLIENT(
messages,
clean_up_tokenization_spaces=False,
max_length=2000,
)
return response[0]["generated_text"][-1]["content"]
def respond(
history: list,
language: str,
temperature: Optional[float] = None,
seed: Optional[int] = None,
) -> list:
"""Respond to the user message with a system message
Return the history with the new message"""
messages = format_history_as_messages(history)
if ZERO_GPU:
content = call_pipeline(messages)
else:
if temperature is None:
temperature = 0.7
response = CLIENT.chat.completions.create(
messages=messages,
max_tokens=2000,
stream=False,
seed=seed,
temperature=temperature,
)
content = response.choices[0].message.content
message = gr.ChatMessage(role="assistant", content=content)
history.append(message)
return history
def update_dataframe(dataframe: DataFrame, history: list) -> DataFrame:
"""Update the dataframe with the new message"""
data = {
"index": 9999,
"value": None,
"liked": False,
}
_, dataframe = wrangle_like_data(
gr.LikeData(target=None, data=data), history.copy()
)
return dataframe
def wrangle_like_data(x: gr.LikeData, history) -> DataFrame:
"""Wrangle conversations and liked data into a DataFrame"""
if isinstance(x.index, int):
liked_index = x.index
else:
liked_index = x.index[0]
output_data = []
for idx, message in enumerate(history):
if isinstance(message, gr.ChatMessage):
message = message.__dict__
if idx == liked_index:
if x.liked is True:
message["metadata"] = {"title": "liked"}
elif x.liked is False:
message["metadata"] = {"title": "disliked"}
if message["metadata"] is None:
message["metadata"] = {}
elif not isinstance(message["metadata"], dict):
message["metadata"] = message["metadata"].__dict__
rating = message["metadata"].get("title")
if rating == "liked":
message["rating"] = 1
elif rating == "disliked":
message["rating"] = -1
else:
message["rating"] = 0
message["chosen"] = ""
message["rejected"] = ""
if message["options"]:
for option in message["options"]:
if not isinstance(option, dict):
option = option.__dict__
message[option["label"]] = option["value"]
else:
if message["rating"] == 1:
message["chosen"] = message["content"]
elif message["rating"] == -1:
message["rejected"] = message["content"]
output_data.append(
dict(
[(k, v) for k, v in message.items() if k not in ["metadata", "options"]]
)
)
return history, DataFrame(data=output_data)
def wrangle_edit_data(
x: gr.EditData,
history: list,
dataframe: DataFrame,
conversation_id: str,
session_id: str,
language: str,
) -> list:
"""Edit the conversation and add negative feedback if assistant message is edited, otherwise regenerate the message
Return the history with the new message"""
if isinstance(x.index, int):
index = x.index
else:
index = x.index[0]
original_message = gr.ChatMessage(
role="assistant", content=dataframe.iloc[index]["content"]
).__dict__
if history[index]["role"] == "user":
# Add feedback on original and corrected message
add_fake_like_data(
history=history[: index + 2],
conversation_id=conversation_id,
session_id=session_id,
language=language,
liked=True,
)
add_fake_like_data(
history=history[: index + 1] + [original_message],
conversation_id=conversation_id,
session_id=session_id,
language=language,
)
history = respond(
history=history[: index + 1],
language=language,
temperature=1.5,
seed=random.randint(0, 1000000),
)
return history
else:
add_fake_like_data(
history=history[: index + 1],
conversation_id=conversation_id,
session_id=session_id,
language=language,
liked=True,
)
add_fake_like_data(
history=history[:index] + [original_message],
conversation_id=conversation_id,
session_id=session_id,
language=language,
)
history = history[: index + 1]
history[-1]["options"] = [
Option(label="chosen", value=x.value),
Option(label="rejected", value=original_message["content"]),
]
return history
def wrangle_retry_data(
x: gr.RetryData,
history: list,
dataframe: DataFrame,
conversation_id: str,
session_id: str,
language: str,
) -> list:
"""Respond to the user message with a system message and add negative feedback on the original message
Return the history with the new message"""
add_fake_like_data(
history=history,
conversation_id=conversation_id,
session_id=session_id,
language=language,
)
# Return the history without a new message
history = respond(
history=history[:-1],
language=language,
temperature=1.5,
seed=random.randint(0, 1000000),
)
return history, update_dataframe(dataframe, history)
# Global variables for tracking language data points
LANGUAGE_DATA_POINTS = update_language_counts_from_dataset()
language_data_lock = threading.Lock()
def get_leaderboard_data():
"""Get sorted leaderboard data for all languages"""
with language_data_lock:
leaderboard_data = {lang: LANGUAGE_DATA_POINTS.get(lang, 0) for lang in LANGUAGES.keys()}
sorted_data = sorted(leaderboard_data.items(), key=lambda x: x[1], reverse=True)
return sorted_data
def increment_language_data_point(language):
"""Increment the data point count for a specific language"""
with language_data_lock:
LANGUAGE_DATA_POINTS[language] += 1
return get_leaderboard_data()
def set_language_data_points(language, count):
"""Manually set the data point count for a specific language"""
with language_data_lock:
LANGUAGE_DATA_POINTS[language] = count
return get_leaderboard_data()
def load_initial_language_data():
"""Load initial language data points from persistent storage or default values"""
data_points_path, use_persistent = get_persistent_storage_path("language_data_points.json")
if data_points_path.exists():
try:
with open(data_points_path, "r", encoding="utf-8") as f:
data = json.load(f)
with language_data_lock:
LANGUAGE_DATA_POINTS.clear()
LANGUAGE_DATA_POINTS.update(data)
except Exception as e:
print(f"Error loading language data points: {e}")
for lang in LANGUAGES.keys():
if lang not in LANGUAGE_DATA_POINTS:
LANGUAGE_DATA_POINTS[lang] = 0
return get_leaderboard_data()
def save_language_data_points():
"""Save language data points to persistent storage"""
data_points_path, use_persistent = get_persistent_storage_path("language_data_points.json")
try:
with language_data_lock:
with open(data_points_path, "w", encoding="utf-8") as f:
json.dump(dict(LANGUAGE_DATA_POINTS), f, ensure_ascii=False, indent=2)
except Exception as e:
print(f"Error saving language data points: {e}")
def submit_conversation(dataframe, conversation_id, session_id, language):
""" "Submit the conversation to dataset repo & update leaderboard"""
if dataframe.empty or len(dataframe) < 2:
gr.Info("No feedback to submit.")
return (gr.Dataframe(value=None, interactive=False), gr.update(), None)
dataframe["content"] = dataframe["content"].apply(_process_content)
dataframe["rating"] = dataframe["rating"].apply(_process_rating)
conversation = dataframe.to_dict(orient="records")
conversation_data = {
"conversation": conversation,
"timestamp": datetime.now().isoformat(),
"session_id": session_id,
"conversation_id": conversation_id,
"language": language,
}
save_feedback(input_object=conversation_data)
leaderboard_data = increment_language_data_point(language)
save_language_data_points()
return (gr.Dataframe(value=None, interactive=False), gr.update(), leaderboard_data)
def open_add_language_modal():
return gr.Group(visible=True)
def close_add_language_modal():
return gr.Group(visible=False)
def save_new_language(lang_name, system_prompt):
"""Save the new language and system prompt to persistent storage if available, otherwise to local file."""
global LANGUAGES
languages_path, use_persistent = get_persistent_storage_path("languages.json")
local_path = Path(__file__).parent / "languages.json"
if languages_path.exists():
with open(languages_path, "r", encoding="utf-8") as f:
data = json.load(f)
else:
data = {}
data[lang_name] = system_prompt
with open(languages_path, "w", encoding="utf-8") as f:
json.dump(data, f, ensure_ascii=False, indent=2)
if use_persistent and local_path != languages_path:
try:
with open(local_path, "w", encoding="utf-8") as f:
json.dump(data, f, ensure_ascii=False, indent=2)
except Exception as e:
print(f"Error updating local backup: {e}")
LANGUAGES.update({lang_name: system_prompt})
return gr.Group(visible=False), gr.HTML("<script>window.location.reload();</script>"), gr.Dropdown(choices=list(LANGUAGES.keys()))
def save_contributor_email(email, name=""):
"""Save contributor email to persistent storage and send notification to admins"""
print(f"[DEBUG] Starting save_contributor_email for: {email}, {name}")
# Still save to persistent storage for record keeping
emails_path, use_persistent = get_persistent_storage_path("contributors.json")
print(f"[DEBUG] Using path: {emails_path}, persistent: {use_persistent}")
# Read existing emails
contributors = []
try:
if emails_path.exists():
with open(emails_path, "r", encoding="utf-8") as f:
contributors = json.load(f)
print(f"[DEBUG] Loaded {len(contributors)} existing contributors")
else:
print(f"[DEBUG] No existing contributors file found at {emails_path}")
except Exception as e:
print(f"[DEBUG] Error reading contributors file: {e}")
# Add new email with timestamp
contributor_data = {
"email": email,
"name": name,
"timestamp": datetime.now().isoformat()
}
contributors.append(contributor_data)
print(f"[DEBUG] Added new contributor data: {contributor_data}")
# Save back to file
try:
with open(emails_path, "w", encoding="utf-8") as f:
json.dump(contributors, f, ensure_ascii=False, indent=2)
print(f"[DEBUG] Successfully saved contributors file with {len(contributors)} entries")
except Exception as e:
print(f"[DEBUG] Error saving contributors file: {e}")
# Send email notification to admins
print(f"[DEBUG] Attempting to send notification email")
try:
send_notification_email(contributor_data)
print(f"[DEBUG] Successfully sent notification email")
return True
except Exception as e:
print(f"[DEBUG] Failed to send notification email: {e}")
print(f"[DEBUG] Error type: {type(e).__name__}")
if hasattr(e, 'args'):
print(f"[DEBUG] Error args: {e.args}")
import traceback
print(f"[DEBUG] Full traceback: {traceback.format_exc()}")
return False
def send_notification_email(contributor_data):
"""Send email notification to admins about new contributor using SendGrid API"""
# Get configuration from environment variables
sender_email = os.getenv("NOTIFICATION_EMAIL", "[email protected]")
recipient_email = os.getenv("ADMIN_EMAIL", "[email protected]")
sendgrid_api_key = os.getenv("SENDGRID_API_KEY", "")
print(f"[DEBUG] Email configuration:")
print(f"[DEBUG] - Sender Email: {sender_email}")
print(f"[DEBUG] - Recipient Email: {recipient_email}")
print(f"[DEBUG] - API Key Set: {'Yes' if sendgrid_api_key else 'No'}")
# If no API key is set, log instead of sending
if not sendgrid_api_key:
print(f"[DEBUG] No SendGrid API key set, would send notification email about contributor: {contributor_data}")
return False
try:
# Create message content
html_content = f"""
<html>
<body>
<h2>New FeeL Contributor Submission</h2>
<p><strong>Name:</strong> {contributor_data.get('name', 'Not provided')}</p>
<p><strong>Email:</strong> {contributor_data.get('email', 'Not provided')}</p>
<p><strong>Timestamp:</strong> {contributor_data.get('timestamp', datetime.now().isoformat())}</p>
</body>
</html>
"""
# Create mail message
print(f"[DEBUG] Creating email message")
message = Mail(
from_email=sender_email,
to_emails=recipient_email,
subject='New FeeL Contributor Submission',
html_content=html_content
)
# Send via API
print(f"[DEBUG] Sending via SendGrid API")
sg = SendGridAPIClient(sendgrid_api_key)
response = sg.send(message)
print(f"[DEBUG] SendGrid API response code: {response.status_code}")
# 202 is success for SendGrid
if response.status_code == 202:
print(f"[DEBUG] Email sent successfully via SendGrid API")
return True
else:
print(f"[DEBUG] SendGrid API returned non-success status code: {response.status_code}")
print(f"[DEBUG] Response body: {response.body}")
return False
except Exception as e:
print(f"[DEBUG] Error in send_notification_email: {e}")
import traceback
print(f"[DEBUG] Full traceback: {traceback.format_exc()}")
return False
css = """
/* Style for the options and retry button */
.options.svelte-pcaovb {
display: none !important;
}
.option.svelte-pcaovb {
display: none !important;
}
.retry-btn {
display: none !important;
}
/* Style for the add language button */
button#add-language-btn {
padding: 0 !important;
font-size: 30px !important;
font-weight: bold !important;
}
/* Style for the user agreement container */
.user-agreement-container {
box-shadow: 0 2px 5px rgba(0,0,0,0.1) !important;
max-height: 300px;
overflow-y: auto;
padding: 10px;
border: 1px solid var(--border-color-primary) !important;
border-radius: 5px;
margin-bottom: 10px;
}
/* Style for the consent modal */
.consent-modal {
position: fixed !important;
top: 50% !important;
left: 50% !important;
transform: translate(-50%, -50%) !important;
z-index: 9999 !important;
background: var(--background-fill-primary) !important;
padding: 20px !important;
border-radius: 10px !important;
box-shadow: 0 4px 10px rgba(0,0,0,0.2) !important;
max-width: 90% !important;
width: 600px !important;
}
/* Overlay for the consent modal */
.modal-overlay {
position: fixed !important;
top: 0 !important;
left: 0 !important;
width: 100% !important;
height: 100% !important;
background-color: rgba(0, 0, 0, 0.5) !important;
z-index: 9998 !important;
}
.footer-banner {
background-color: var(--background-fill-secondary);
padding: 10px 20px;
border-top: 1px solid var(--border-color-primary);
margin-top: 20px;
text-align: center;
}
.footer-banner p {
margin: 0;
}
/* Language settings styling */
.language-settings-header {
background-color: var(--primary-500); /* Use Gradio's primary color */
padding: 5px;
border-radius: 8px 8px 0 0;
margin-bottom: 0;
color: var(--body-text-color);
font-weight: bold;
}
.language-instruction {
margin-top: 5px;
margin-bottom: 5px;
padding: 0 15px;
}
.language-container {
border: 1px solid var(--border-color-primary);
border-radius: 8px;
overflow: hidden;
box-shadow: 0 2px 5px rgba(0,0,0,0.1);
margin-bottom: 20px;
}
.language-dropdown {
padding: 10px 15px 20px 15px;
}
.add-language-btn {
background-color: var(--primary-500) !important;
color: var(--body-text-color) !important;
border: none !important;
font-weight: bold !important;
transition: background-color 0.3s !important;
}
.add-language-btn:hover {
background-color: var(--primary-600) !important;
}
/* Yellow button styling - now using primary color variable */
button.yellow-btn {
background-color: var(--primary-500) !important;
}
.footer-section {
margin-top: 40px;
border-top: 1px solid var(--border-color-primary);
padding-top: 20px;
}
.admin-tools-accordion {
max-width: 800px;
margin: 0 auto;
}
.edit-instructions {
padding: 10px 0;
margin-top: 5px;
}
/* Leaderboard styles */
.leaderboard-container {
border-left: 1px solid #eaeaea;
padding-left: 1rem;
height: 100%;
}
.leaderboard-title {
font-weight: bold;
text-align: center;
margin-bottom: 1rem;
}
.leaderboard-item {
display: flex;
justify-content: space-between;
padding: 0.5rem 0;
border-bottom: 1px solid #f0f0f0;
}
.leaderboard-rank {
font-weight: bold;
margin-right: 0.5rem;
}
.leaderboard-language {
flex-grow: 1;
}
.leaderboard-count {
font-weight: bold;
}
.leaderboard-admin-panel {
margin-top: 1rem;
padding-top: 1rem;
border-top: 1px solid #eaeaea;
}
"""
def get_config(request: gr.Request):
"""Get configuration from cookies"""
config = {
"feel_consent": "false",
}
if request and request.cookies:
for key in config.keys():
if key in request.cookies:
config[key] = request.cookies[key]
return config["feel_consent"] == "true"
def initialize_consent_status(request: gr.Request):
"""Initialize consent status and language preference from cookies"""
has_consent = get_config(request)
return has_consent
js = '''function js(){
window.set_cookie = function(key, value){
document.cookie = key+'='+value+'; Path=/; SameSite=Strict';
return [value];
}
}'''
def render_leaderboard(leaderboard_data=None):
"""Render the leaderboard HTML"""
# Use the input parameter if provided, otherwise use global data
if leaderboard_data:
sorted_langs = leaderboard_data
else:
counts = LANGUAGE_DATA_POINTS # Use the global variable directly
languages = LANGUAGES
sorted_langs = sorted(
[(lang, counts.get(lang, 0)) for lang in languages.keys()],
key=lambda x: x[1],
reverse=True
)
html = """
<table class="leaderboard">
<tr>
<th>Rank</th>
<th>Language</th>
<th>Data Points</th>
</tr>
"""
for i, (lang, count) in enumerate(sorted_langs):
html += f"""
<tr>
<td>{i+1}</td>
<td>{lang}</td>
<td>{count}</td>
</tr>
"""
html += "</table>"
return html
with gr.Blocks(css=css, js=js) as demo:
user_consented = gr.State(value=False)
language = gr.State(value="English") # Default language state
leaderboard_data = gr.State([])
# Main application interface (initially hidden)
with gr.Group() as main_app:
with gr.Row():
# Main content column (wider)
with gr.Column(scale=3, elem_classes=["main-content"]):
##############################
# Chatbot
##############################
gr.Markdown("""
# βΎοΈ FeeL: Improving LMs for All Languages
""", elem_classes=["app-title"])
with gr.Accordion("") as explanation:
gr.Markdown(f"""
**FeeL** (Feedback Loop) is a community-driven project by MIT, Hugging Face and IBM that aims to make language models better in *all languages*.
### Why This Matters
Have you ever tried using an AI in your native language only to get responses that barely make sense? Most AI improvements prioritize widely spoken languages, while others fall behind. FeeL changes this by letting YOU shape how models respond in your language.
### What You Can Do
1. **Select your language** from the dropdown menu (or add a new one if yours is missing)
2. **Chat with the model** in your language
3. **Provide feedback** on each response using:
- π/π Like or dislike responses
- βοΈ Edit responses to sound more natural or correct
- π Regenerate to try another response
Your feedback is directly used to fine-tune the model in real-time. The more you interact, the better the model becomes for your language community.
All [data](https://huggingface.co./datasets/{scheduler.repo_id}), [code](https://github.com/huggingface/feel) and [models](https://huggingface.co./collections/feel-fl/feel-models-67a9b6ef0fdd554315e295e8) are publicly available for research and development.
""")
chatbot = gr.Chatbot(
elem_id="chatbot",
editable="all",
value=format_system_message("English"),
type="messages",
feedback_options=["Like", "Dislike"],
height=600
)
chat_input = gr.Textbox(
interactive=True,
placeholder="Enter message or upload file...",
show_label=False,
submit_btn=True,
)
with gr.Accordion("Collected feedback", open=False):
dataframe = gr.Dataframe(wrap=True, label="Collected feedback")
submit_btn = gr.Button(value="πΎ Submit conversation", visible=False)
# Sidebar column (narrower)
with gr.Column(scale=1, elem_classes=["sidebar"]):
with gr.Group(elem_classes=["language-container"]):
gr.Markdown("### Language Settings", elem_classes=["language-settings-header"])
gr.Markdown("Select your preferred language:", elem_classes=["language-instruction"])
with gr.Column(elem_classes=["language-dropdown"]):
language_dropdown = gr.Dropdown(
choices=list(load_languages().keys()),
value="English",
container=True,
show_label=False,
)
add_language_btn = gr.Button(
"Add New Language",
size="sm",
elem_classes=["add-language-btn"]
)
# Right column with leaderboard
with gr.Column(scale=3, elem_classes=["leaderboard-container"]):
gr.Markdown("# Language Leaderboard", elem_classes=["leaderboard-title"])
leaderboard_html = gr.HTML("Loading leaderboard...")
refresh_leaderboard_btn = gr.Button("Refresh Counts from Dataset")
leaderboard_html.value = render_leaderboard()
# HELPERS:
def update_func():
update_language_counts_from_dataset()
return render_leaderboard()
def set_language_count(language, count):
"""admin function to manually set language count"""
if not language:
return render_leaderboard()
data_file, _ = get_persistent_storage_path("language_data_points.json")
if data_file.exists():
with open(data_file, "r", encoding="utf-8") as f:
try:
data = json.load(f)
except json.JSONDecodeError:
data = {}
else:
data = {}
data[language] = int(count)
with open(data_file, "w", encoding="utf-8") as f:
json.dump(data, f, ensure_ascii=False, indent=2)
return render_leaderboard()
refresh_leaderboard_btn.click(
update_func,
outputs=leaderboard_html
)
with gr.Accordion("Admin Controls", open=False, visible=False) as admin_panel:
with gr.Row():
admin_language = gr.Dropdown(choices=list(LANGUAGES.keys()), label="Language")
admin_count = gr.Number(value=0, label="Data Points")
set_count_btn = gr.Button("Set Count")
# toggle button for admin panel?
admin_toggle = gr.Button("Admin Controls", visible=True)
def toggle_admin_view():
return gr.update(visible=True)
set_count_btn.click(
set_language_count,
inputs=[admin_language, admin_count],
outputs=leaderboard_html
)
admin_toggle.click(
toggle_admin_view,
outputs=admin_panel
)
# Create a hidden group instead of a modal
with gr.Group(visible=False) as add_language_modal:
gr.Markdown("### Add New Language")
new_lang_name = gr.Textbox(label="Language Name", lines=1)
new_system_prompt = gr.Textbox(
label="System Prompt",
lines=4,
placeholder="Write in your own language: \"You are a helpful assistant. Always respond to requests in fluent and natural [your language], regardless of the language used by the user.\"",
info="The system prompt tells the AI how to behave. Make sure to write it in the language you're adding so the AI knows how to respond naturally."
)
with gr.Row():
save_language_btn = gr.Button("Save")
cancel_language_btn = gr.Button("Cancel")
refresh_html = gr.HTML(visible=False)
session_id = gr.Textbox(
interactive=False,
value=str(uuid.uuid4()),
visible=False,
)
conversation_id = gr.Textbox(
interactive=False,
value=str(uuid.uuid4()),
visible=False,
)
# Overlay for the consent modal
with gr.Group(elem_classes=["modal-overlay"]) as consent_overlay:
pass
# Consent popup
with gr.Group(elem_classes=["consent-modal"]) as consent_modal:
gr.Markdown("# User Agreement")
with gr.Group(elem_classes=["user-agreement-container"]):
gr.Markdown(USER_AGREEMENT)
consent_btn = gr.Button("I agree")
# Add a contact footer at the bottom of the page
with gr.Row(elem_classes=["footer-banner"]) as footer_banner:
gr.Markdown("""
### Contact Us
Have questions, requests, or ideas for how we can improve? Email us at: **[email protected]**, **[email protected]**
""")
# Add a subtle language management section at the bottom
with gr.Row(elem_classes=["footer-section"]) as footer_section:
with gr.Accordion("π§ Admin Language Management", open=False, elem_classes=["admin-tools-accordion"]):
# Removed the "Language File Manager" headline
# Password authentication - button below password field
admin_password = gr.Textbox(
type="password",
label="Admin Password",
placeholder="Enter admin password"
)
auth_button = gr.Button("Authenticate", size="sm")
auth_status = gr.Markdown("")
# File management (initially hidden)
with gr.Group(visible=False) as lang_editor_group:
gr.Markdown("Edit the languages JSON file below:", elem_classes=["edit-instructions"])
# Language file editor
lang_json_editor = gr.Code(
language="json",
label="Languages JSON",
lines=15
)
with gr.Row():
load_button = gr.Button("Load Current Languages", size="sm")
save_button = gr.Button("Save Changes", size="sm", elem_classes=["yellow-btn"])
result_message = gr.Markdown("")
# Check consent on page load and show/hide components appropriately
def initialize_consent_status():
# This function will be called when the app loads
return False # Default to not consented
def update_visibility(has_consent):
# Show/hide components based on consent status
return (
gr.Group(visible=has_consent), # main_app
gr.Group(visible=not has_consent), # consent_overlay
gr.Group(visible=not has_consent), # consent_modal
gr.Group(visible=has_consent), # footer_banner
gr.Group(visible=has_consent) # footer_section
)
# Initialize app with consent checking
demo.load(
fn=initialize_consent_status,
outputs=user_consented,
js=js
).then(
fn=update_visibility,
inputs=user_consented,
outputs=[main_app, consent_overlay, consent_modal, footer_banner, footer_section]
)
# Update the consent button click handler
consent_btn.click(
fn=lambda: True,
outputs=user_consented,
js="() => set_cookie('feel_consent', 'true')"
).then(
fn=update_visibility,
inputs=user_consented,
outputs=[main_app, consent_overlay, consent_modal, footer_banner, footer_section]
)
##############################
# Deal with feedback
##############################
language_dropdown.change(
fn=format_system_message,
inputs=[language_dropdown],
outputs=[chatbot],
).then(
fn=lambda x: x, # Update the language state
inputs=[language_dropdown],
outputs=[language]
)
chat_input.submit(
fn=add_user_message,
inputs=[chatbot, chat_input],
outputs=[chatbot, chat_input],
).then(
respond,
inputs=[chatbot, language],
outputs=[chatbot]
).then(
lambda: gr.Textbox(interactive=True),
None,
[chat_input]
)
# Add a separate chain for updating the dataframe and leaderboard
# This avoids the issue by not passing chatbot through this chain
chatbot.change(
fn=update_dataframe,
inputs=[dataframe, chatbot],
outputs=[dataframe]
).then(
submit_conversation,
inputs=[dataframe, conversation_id, session_id, language],
outputs=[dataframe, chatbot, leaderboard_data] # Replace None with chatbot
).then(
render_leaderboard,
inputs=[leaderboard_data],
outputs=[leaderboard_html]
)
chatbot.like(
fn=wrangle_like_data,
inputs=[chatbot],
outputs=[chatbot, dataframe],
like_user_message=False,
).then(
submit_conversation,
inputs=[dataframe, conversation_id, session_id, language],
)
chatbot.retry(
fn=wrangle_retry_data,
inputs=[chatbot, dataframe, conversation_id, session_id, language],
outputs=[chatbot, dataframe],
)
chatbot.edit(
fn=wrangle_edit_data,
inputs=[chatbot, dataframe, conversation_id, session_id, language],
outputs=[chatbot],
).then(update_dataframe, inputs=[dataframe, chatbot], outputs=[dataframe])
gr.on(
triggers=[submit_btn.click, chatbot.clear],
fn=submit_conversation,
inputs=[dataframe, conversation_id, session_id, language],
outputs=[dataframe, chatbot],
).then(
fn=lambda x: str(uuid.uuid4()),
inputs=[conversation_id],
outputs=[conversation_id],
)
def on_app_load():
global LANGUAGES
LANGUAGES = load_languages()
language_choices = list(LANGUAGES.keys())
default_language = language_choices[0] if language_choices else "English"
leaderboard_data = load_initial_language_data()
return str(uuid.uuid4()), gr.Dropdown(choices=language_choices, value=default_language), default_language
def toggle_admin_panel(visible):
return gr.Accordion(visible=not visible)
def handle_set_count(language, count):
updated_data = set_language_data_points(language, int(count))
save_language_data_points()
return render_leaderboard(), updated_data
demo.load(
fn=on_app_load,
inputs=None,
outputs=[
session_id,
language_dropdown,
language
]
).then(
fn=lambda: render_leaderboard(), # Call with no arguments
outputs=[leaderboard_html]
)
add_language_btn.click(
fn=lambda: gr.Group(visible=True),
outputs=[add_language_modal]
)
cancel_language_btn.click(
fn=lambda: gr.Group(visible=False),
outputs=[add_language_modal]
)
save_language_btn.click(
fn=save_new_language,
inputs=[new_lang_name, new_system_prompt],
outputs=[add_language_modal, refresh_html, language_dropdown]
)
# Connect the events
# submit_email_btn.click(
# fn=lambda email, name, consent: "Thank you for your submission!" if consent else "Please provide consent to submit",
# inputs=[contributor_email, contributor_name, email_consent],
# outputs=[email_submit_status]
# ).then(
# fn=lambda email, name, consent: save_contributor_email(email, name) if consent else None,
# inputs=[contributor_email, contributor_name, email_consent],
# outputs=None
# )
# Add the necessary functions
def authenticate(password):
"""Authenticate the admin password"""
correct_password = os.getenv("ADMIN_PASSWORD", "default_admin_password")
if password == correct_password:
return "β
Authentication successful. You can now manage languages.", gr.Group(visible=True)
else:
return "β Incorrect password. Please try again.", gr.Group(visible=False)
def load_languages_file():
"""Load the languages file from persistent storage"""
languages_path, _ = get_persistent_storage_path("languages.json")
try:
with open(languages_path, "r", encoding="utf-8") as f:
content = f.read()
return content, "Languages file loaded successfully."
except Exception as e:
return "", f"Error loading languages file: {str(e)}"
def save_languages_file(json_content):
"""Save the languages file to persistent storage"""
try:
# Validate JSON format
languages_dict = json.loads(json_content)
# Basic validation
if not isinstance(languages_dict, dict):
return "Error: Content must be a JSON object (dictionary)."
for key, value in languages_dict.items():
if not isinstance(key, str) or not isinstance(value, str):
return f"Error: Keys and values must be strings. Issue with: {key}: {value}"
# Save to file
languages_path, _ = get_persistent_storage_path("languages.json")
with open(languages_path, "w", encoding="utf-8") as f:
f.write(json_content)
return f"β
Languages file updated successfully with {len(languages_dict)} languages."
except json.JSONDecodeError as e:
return f"β Invalid JSON format: {str(e)}"
except Exception as e:
return f"β Error saving languages file: {str(e)}"
# Connect the event handlers
auth_button.click(
fn=authenticate,
inputs=[admin_password],
outputs=[auth_status, lang_editor_group]
)
load_button.click(
fn=load_languages_file,
inputs=[],
outputs=[lang_json_editor, result_message]
)
save_button.click(
fn=save_languages_file,
inputs=[lang_json_editor],
outputs=[result_message]
)
admin_toggle.click(
fn=toggle_admin_panel,
inputs=[admin_panel],
outputs=[admin_panel]
)
set_count_btn.click(
fn=handle_set_count,
inputs=[admin_language, admin_count],
outputs=[leaderboard_html, leaderboard_data]
)
demo.launch()
|