Update app.py
Browse files
app.py
CHANGED
@@ -15,7 +15,8 @@ import pandas as pd # Para formatear la salida en tabla
|
|
15 |
|
16 |
# --- Configuración ---
|
17 |
MODEL_REPO_ID = "google/cxr-foundation"
|
18 |
-
MODEL_DOWNLOAD_DIR = './hf_cxr_foundation_space'
|
|
|
19 |
SIMILARITY_DIFFERENCE_THRESHOLD = 0.1
|
20 |
POSITIVE_SIMILARITY_THRESHOLD = 0.1
|
21 |
print(f"Usando umbrales: Comp Δ={SIMILARITY_DIFFERENCE_THRESHOLD}, Simp τ={POSITIVE_SIMILARITY_THRESHOLD}")
|
@@ -30,405 +31,927 @@ criteria_list_negative = [
|
|
30 |
"cropped image", "scapulae overlying lungs", "blurred image", "obscuring artifact"
|
31 |
]
|
32 |
|
33 |
-
# --- Funciones Auxiliares (
|
34 |
-
# @tf.function(input_signature=[tf.TensorSpec(shape=[None], dtype=tf.string)])
|
35 |
-
|
36 |
-
|
|
|
37 |
|
38 |
def bert_tokenize(text, preprocessor):
|
39 |
-
|
|
|
|
|
40 |
if not isinstance(text, str): text = str(text)
|
41 |
-
|
|
|
|
|
|
|
|
|
42 |
ids = out['input_word_ids'].numpy().astype(np.int32)
|
43 |
-
masks = out['input_mask'].numpy().astype(np.float32)
|
44 |
paddings = 1.0 - masks
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
ids[end_token_idx] = 0
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
if ids.ndim == 2: ids = np.expand_dims(ids, axis=1)
|
49 |
-
if paddings.
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
51 |
if ids.shape != expected_shape:
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
else: raise ValueError(f"Shape incorrecta para paddings: {paddings.shape}, esperado {expected_shape}")
|
|
|
57 |
return ids, paddings
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
elif image_array.ndim != 2:
|
63 |
-
raise ValueError(f'Array debe ser 2-D
|
|
|
|
|
|
|
|
|
64 |
image = image_array.astype(np.float32)
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
else:
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
74 |
if image_array.dtype != np.uint8:
|
|
|
75 |
image *= 65535 / current_max
|
76 |
-
pixel_array =
|
|
|
|
|
|
|
|
|
|
|
77 |
else:
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
example = tf.train.Example()
|
83 |
-
|
84 |
-
|
|
|
|
|
|
|
85 |
features['image/format'].bytes_list.value.append(b'png')
|
86 |
return example
|
87 |
|
88 |
-
def generate_image_embedding(img_np,
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
try:
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
elixrc_embedding = elixrc_output['feature_maps_0'].numpy()
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
'image_feature': elixrc_embedding.tolist(),
|
96 |
-
|
97 |
-
'
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
}
|
99 |
-
qformer_output_img = qformer_infer(**
|
100 |
-
image_embedding = qformer_output_img['
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
return image_embedding
|
106 |
-
except Exception as e:
|
107 |
-
print(f"Error generando embedding imagen: {e}"); traceback.print_exc(); raise
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
detailed_results = {}
|
114 |
-
print("\n--- Calculando similitudes ---")
|
|
|
115 |
for i in range(len(criteria_list_positive)):
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
classification_comp, classification_simp = "ERROR", "ERROR"
|
|
|
121 |
try:
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
tokens_neg, paddings_neg = bert_tokenize(negative_text, bert_preprocessor)
|
128 |
-
qformer_input_neg
|
129 |
-
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
-
|
133 |
-
|
|
|
|
|
|
|
134 |
|
135 |
-
similarity_positive = cosine_similarity(image_embedding, text_embedding_pos)[0][0]
|
136 |
-
similarity_negative = cosine_similarity(image_embedding, text_embedding_neg)[0][0]
|
137 |
|
138 |
-
|
139 |
-
classification_comp = "PASS" if difference > SIMILARITY_DIFFERENCE_THRESHOLD else "FAIL"
|
140 |
-
classification_simp = "PASS" if similarity_positive > POSITIVE_SIMILARITY_THRESHOLD else "FAIL"
|
141 |
-
print(f" Sim(+)={similarity_positive:.4f}, Sim(-)={similarity_negative:.4f}, Diff={difference:.4f} -> Comp:{classification_comp}, Simp:{classification_simp}")
|
142 |
-
except Exception as e:
|
143 |
-
print(f" ERROR criterio '{criterion_name}': {e}"); traceback.print_exc()
|
144 |
detailed_results[criterion_name] = {
|
145 |
-
|
146 |
-
'
|
147 |
-
'
|
148 |
-
'
|
149 |
-
'classification_comparative':
|
|
|
150 |
}
|
151 |
-
return
|
|
|
152 |
|
153 |
# --- Carga Global de Modelos ---
|
154 |
-
print("--- Iniciando carga global de modelos
|
|
|
|
|
155 |
start_time = time.time()
|
156 |
models_loaded = False
|
157 |
bert_preprocessor_global = None
|
158 |
-
|
|
|
|
|
|
|
|
|
159 |
qformer_infer_global = None
|
160 |
-
try:
|
161 |
-
|
162 |
-
hf_token = os.environ.get("HF_TOKEN") # Leer
|
163 |
-
|
164 |
-
|
165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
|
167 |
-
|
168 |
-
|
169 |
snapshot_download(repo_id=MODEL_REPO_ID, local_dir=MODEL_DOWNLOAD_DIR,
|
170 |
-
allow_patterns=['elixr
|
|
|
171 |
local_dir_use_symlinks=False, token=hf_token) # Pasar token aquí
|
172 |
print("Modelos descargados/verificados.")
|
173 |
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
print("
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
elixrc_infer_global = elixrc_model.signatures['serving_default']
|
183 |
-
print("Modelo
|
|
|
|
|
|
|
184 |
|
185 |
-
print("Cargando
|
186 |
-
|
187 |
-
|
|
|
|
|
|
|
|
|
188 |
qformer_infer_global = qformer_model.signatures['serving_default']
|
|
|
189 |
print("Modelo QFormer cargado.")
|
190 |
|
191 |
models_loaded = True
|
192 |
-
|
193 |
-
|
|
|
|
|
|
|
|
|
|
|
194 |
except Exception as e:
|
195 |
models_loaded = False
|
196 |
-
print(
|
|
|
197 |
|
198 |
-
# --- Función Principal de Procesamiento
|
199 |
-
|
200 |
-
|
|
|
|
|
|
|
|
|
201 |
if not models_loaded:
|
202 |
-
raise gr.Error("Error: Los
|
203 |
-
|
|
|
204 |
# Devuelve valores por defecto/vacíos y controla la visibilidad
|
205 |
return (
|
206 |
-
|
207 |
-
gr.update(visible=
|
208 |
-
|
|
|
|
|
|
|
|
|
|
|
209 |
gr.update(value="N/A"), # Borra etiqueta
|
210 |
-
|
|
|
|
|
211 |
None # Borra JSON
|
212 |
)
|
213 |
|
214 |
print("\n--- Iniciando evaluación para nueva imagen ---")
|
215 |
-
|
216 |
try:
|
217 |
-
#
|
218 |
-
|
219 |
-
|
220 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
# 3. Clasificar
|
222 |
-
|
223 |
-
#
|
224 |
-
|
225 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
total_count += 1
|
227 |
-
sim_pos = details
|
228 |
-
|
|
|
|
|
|
|
|
|
|
|
229 |
diff = details['difference']
|
230 |
comp = details['classification_comparative']
|
231 |
simp = details['classification_simplified']
|
232 |
-
|
233 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
if comp == "PASS": passed_count += 1
|
235 |
-
|
236 |
-
|
|
|
|
|
|
|
|
|
237 |
if total_count > 0:
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
elif pass_rate >=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
else: overall_quality = "Poor"
|
243 |
-
quality_label
|
|
|
|
|
|
|
|
|
|
|
244 |
end_process_time = time.time()
|
245 |
-
print(f"--- Evaluación completada en {end_process_time - start_process_time:.2f}
|
|
|
|
|
246 |
# Devolver resultados y actualizar visibilidad
|
247 |
return (
|
248 |
-
|
|
|
|
|
249 |
gr.update(visible=True), # Muestra resultados
|
250 |
-
image_pil, # Muestra imagen
|
|
|
251 |
gr.update(value=quality_label), # Actualiza etiqueta
|
252 |
df_results, # Actualiza dataframe
|
253 |
-
|
254 |
)
|
255 |
-
except Exception as e
|
256 |
-
|
257 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
|
259 |
# --- Función para Resetear la UI ---
|
260 |
-
def reset_ui
|
|
|
261 |
print("Reseteando UI...")
|
262 |
return (
|
263 |
-
gr.update(visible
|
|
|
264 |
gr.update(visible=False), # Oculta resultados
|
265 |
-
None, # Borra imagen de
|
|
|
|
|
|
|
|
|
266 |
None, # Borra imagen de salida
|
267 |
gr.update(value="N/A"), # Borra etiqueta
|
268 |
-
pd
|
|
|
|
|
|
|
269 |
None # Borra JSON
|
270 |
)
|
271 |
|
272 |
# --- Definir Tema Oscuro Personalizado ---
|
273 |
-
# Inspirado en los colores del HTML original y
|
274 |
-
|
|
|
|
|
275 |
primary_hue=gr.themes.colors.blue, # Azul como color primario
|
276 |
-
secondary_hue=gr.themes.colors.blue,
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
# Fondos
|
282 |
body_background_fill="#111827", # Fondo principal muy oscuro (gray-900)
|
283 |
-
background_fill_primary="#1f2937",
|
284 |
-
|
285 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
286 |
|
287 |
# Texto
|
288 |
-
|
289 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
290 |
block_label_text_color="#d1d5db", # Etiquetas de bloque (gray-300)
|
291 |
-
|
|
|
|
|
|
|
|
|
|
|
292 |
|
293 |
-
|
294 |
-
|
295 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
296 |
|
297 |
# Botones y Elementos Interactivos
|
298 |
-
|
|
|
299 |
button_primary_text_color="#ffffff",
|
300 |
-
|
|
|
301 |
button_secondary_text_color="#ffffff",
|
302 |
-
input_background_fill="#
|
303 |
-
|
|
|
|
|
|
|
|
|
304 |
input_text_color="#ffffff", # Texto en inputs
|
305 |
|
306 |
# Sombras y Radios
|
307 |
-
shadow_drop="rgba(0,0,0,0
|
308 |
-
|
309 |
-
|
|
|
|
|
|
|
|
|
|
|
310 |
)
|
311 |
|
312 |
|
313 |
-
# --- Definir la Interfaz Gradio con
|
|
|
314 |
with gr.Blocks(theme=dark_theme, title="CXR Quality Assessment") as demo:
|
315 |
# --- Cabecera ---
|
316 |
with gr.Row():
|
317 |
gr.Markdown(
|
318 |
"""
|
319 |
-
# <span style="color: #e5e7eb;">CXR Quality Assessment</span>
|
320 |
-
<p style
|
321 |
-
|
322 |
-
|
|
|
|
|
|
|
|
|
323 |
)
|
324 |
|
325 |
# --- Contenido Principal (Dos Columnas) ---
|
326 |
-
with gr
|
|
|
327 |
|
328 |
-
# --- Columna
|
329 |
-
|
330 |
-
|
331 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
332 |
with gr.Row():
|
333 |
-
|
|
|
|
|
334 |
reset_btn = gr.Button("Reset", variant="secondary", scale=1)
|
335 |
-
|
|
|
|
|
336 |
# gr.Examples(
|
337 |
-
|
|
|
|
|
|
|
338 |
# inputs=input_image, label="Example CXR"
|
339 |
# )
|
340 |
gr.Markdown(
|
341 |
-
"
|
|
|
|
|
342 |
)
|
343 |
|
344 |
|
345 |
# --- Columna Derecha (Bienvenida / Resultados) ---
|
346 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
347 |
|
348 |
-
# --- Bloque de Bienvenida (Visible Inicialmente) ---
|
349 |
-
with gr.Column(visible=True, elem_id="welcome-section") as welcome_block:
|
350 |
-
gr.Markdown(
|
351 |
"""
|
352 |
### Welcome!
|
353 |
-
Upload a chest X-ray image (
|
|
|
|
|
354 |
|
355 |
-
The system will evaluate its technical quality based on 7 standard criteria using the ELIXR model family.
|
|
|
|
|
356 |
The results will appear here once the analysis is complete.
|
357 |
-
""",
|
|
|
|
|
358 |
)
|
359 |
-
# Podrías añadir un icono o imagen aquí si quieres
|
360 |
-
# gr.Image("path/to/welcome_icon.png", interactive=False, show_label=False, show_download_button=False)
|
361 |
|
362 |
|
363 |
-
# ---
|
364 |
-
|
365 |
-
|
366 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
367 |
with gr.Column(scale=1):
|
368 |
output_image = gr.Image(type="pil", label="Analyzed Image", interactive=False)
|
369 |
-
with gr.Column(scale=
|
370 |
-
|
|
|
|
|
|
|
|
|
371 |
output_label = gr.Label(value="N/A", label="Overall Quality Estimate", elem_id="quality-label")
|
372 |
-
# Podríamos añadir más texto de resumen aquí si quisiéramos
|
373 |
|
374 |
-
gr.Markdown
|
375 |
-
|
376 |
-
|
|
|
|
|
|
|
377 |
label=None, # Quitar etiqueta redundante
|
378 |
wrap=True,
|
379 |
-
|
380 |
-
|
381 |
-
|
|
|
382 |
overflow_row_behaviour="show_ends", # Muestra inicio/fin al hacer scroll
|
383 |
-
|
384 |
elem_id="results-dataframe"
|
385 |
)
|
386 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
387 |
output_json = gr.JSON(label=None)
|
388 |
|
389 |
gr.Markdown(
|
390 |
f"""
|
391 |
#### Technical Notes
|
392 |
-
* **Criterion:** Quality
|
|
|
|
|
|
|
393 |
* **Sim (+/-):** Cosine similarity with positive/negative prompt.
|
394 |
* **Difference:** Sim (+) - Sim (-).
|
395 |
-
* **Assessment (Comp):** PASS if Difference > {
|
396 |
-
|
|
|
|
|
|
|
|
|
397 |
""", elem_id="notes-text"
|
398 |
)
|
399 |
|
400 |
# --- Pie de página ---
|
401 |
gr.Markdown(
|
402 |
"""
|
403 |
-
|
404 |
-
|
405 |
-
|
|
|
|
|
|
|
406 |
</p>
|
407 |
""", elem_id="app-footer"
|
408 |
-
)
|
|
|
|
|
|
|
|
|
409 |
|
410 |
|
411 |
# --- Conexiones de Eventos ---
|
412 |
analyze_btn.click(
|
413 |
-
|
414 |
-
inputs=[
|
|
|
415 |
outputs=[
|
416 |
-
welcome_block, #
|
|
|
417 |
results_block, # -> actualiza visibilidad resultados
|
418 |
-
|
|
|
|
|
419 |
output_label, # -> actualiza etiqueta resumen
|
420 |
output_dataframe, # -> actualiza tabla
|
421 |
-
|
422 |
]
|
423 |
)
|
424 |
|
425 |
reset_btn.click(
|
426 |
fn=reset_ui,
|
427 |
-
inputs=None,
|
|
|
|
|
428 |
outputs=[
|
429 |
welcome_block,
|
430 |
-
|
431 |
-
|
|
|
432 |
output_image,
|
433 |
output_label,
|
434 |
output_dataframe,
|
@@ -436,10 +959,18 @@ with gr.Blocks(theme=dark_theme, title="CXR Quality Assessment") as demo:
|
|
436 |
]
|
437 |
)
|
438 |
|
|
|
|
|
439 |
|
440 |
-
|
441 |
if __name__ == "__main__":
|
442 |
-
# server_name="0.0.0.0" para accesibilidad en red local
|
443 |
-
# server_port=7860 es el puerto estándar de HF
|
444 |
-
|
445 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
# --- Configuración ---
|
17 |
MODEL_REPO_ID = "google/cxr-foundation"
|
18 |
+
MODEL_DOWNLOAD_DIR = './hf_cxr_foundation_space' # Directorio dentro del contenedor del Space
|
19 |
+
# Umbrales
|
20 |
SIMILARITY_DIFFERENCE_THRESHOLD = 0.1
|
21 |
POSITIVE_SIMILARITY_THRESHOLD = 0.1
|
22 |
print(f"Usando umbrales: Comp Δ={SIMILARITY_DIFFERENCE_THRESHOLD}, Simp τ={POSITIVE_SIMILARITY_THRESHOLD}")
|
|
|
31 |
"cropped image", "scapulae overlying lungs", "blurred image", "obscuring artifact"
|
32 |
]
|
33 |
|
34 |
+
# --- Funciones Auxiliares (Integradas o adaptadas) ---
|
35 |
+
# @tf.function(input_signature=[tf.TensorSpec(shape=[None], dtype=tf.string)]) # Puede ayudar rendimiento
|
36 |
+
def preprocess_text(text):
|
37 |
+
"""Función interna del preprocesador BERT."""
|
38 |
+
return bert_preprocessor_global(text) # Asume que bert_preprocessor_global está cargado
|
39 |
|
40 |
def bert_tokenize(text, preprocessor):
|
41 |
+
"""Tokeniza texto usando el preprocesador BERT cargado globalmente."""
|
42 |
+
if preprocessor is None:
|
43 |
+
raise ValueError("BERT preprocessor no está cargado.")
|
44 |
if not isinstance(text, str): text = str(text)
|
45 |
+
|
46 |
+
# Ejecutar el preprocesador
|
47 |
+
out¡ = preprocessor(tf.constant([text.lower()]))
|
48 |
+
|
49 |
+
# Extraer y procesar IDs y máscaras
|
50 |
ids = out['input_word_ids'].numpy().astype(np.int32)
|
51 |
+
masks =Por supuesto! Aquí está el código completo del archivo `app.py` para out['input_mask'].numpy().astype(np.float32)
|
52 |
paddings = 1.0 - masks
|
53 |
+
|
54 |
+
# Reemplazar token [SEP] (102) por 0 y marcar Gradio con la corrección del tema oscuro (eliminando `text_color_subdued`).
|
55 |
+
|
56 |
+
como padding
|
57 |
+
end_token_idx = (ids == 10```python
|
58 |
+
import gradio as gr
|
59 |
+
import os
|
60 |
+
import io
|
61 |
+
import png
|
62 |
+
import tensorflow as tf2)
|
63 |
ids[end_token_idx] = 0
|
64 |
+
|
65 |
+
import tensorflow_text as tf_text
|
66 |
+
import tensorflow_hub as tf paddings[end_token_idx] = 1.0_hub
|
67 |
+
import numpy as np
|
68 |
+
from PIL import Image
|
69 |
+
from huggingface_hub import snapshot_download,
|
70 |
+
|
71 |
+
# Asegurar las dimensiones (B, T, S) -> ( HfFolder
|
72 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
73 |
+
import1, 1, 128)
|
74 |
+
# El preprocesador puede devolver (1, 128), necesitamos (1, 1, 12 traceback
|
75 |
+
import time
|
76 |
+
import pandas as pd # Para formatear la salida en tabla
|
77 |
+
|
78 |
+
# --- Configuración ---8)
|
79 |
if ids.ndim == 2: ids = np.expand_dims(ids, axis=1)
|
80 |
+
if paddings.
|
81 |
+
MODEL_REPO_ID = "google/cxr-foundation"
|
82 |
+
ndim == 2: paddings = np.expand_dims(paddMODEL_DOWNLOAD_DIR = './hf_cxr_foundation_space'ings, axis=1)
|
83 |
+
|
84 |
+
# Verificar formas finales
|
85 |
+
expected_shape = (1 # Directorio dentro del contenedor del Space
|
86 |
+
SIMILARITY_DIFFERENCE_THRESHOLD = , 1, 128)
|
87 |
if ids.shape != expected_shape:
|
88 |
+
# Intentar reajustar si es necesario (puede0.1
|
89 |
+
POSITIVE_SIMILARITY_THRESHOLD = 0.1 pasar con algunas versiones)
|
90 |
+
if ids.shape == (1,1
|
91 |
+
print(f"Usando umbrales: Comp Δ={SIMILAR28): ids = np.expand_dims(ids, axis=1ITY_DIFFERENCE_THRESHOLD}, Simp τ={POSITIVE_SIMILARITY_THRESHOLD}")
|
92 |
+
|
93 |
+
# --- Prompts ---
|
94 |
+
criteria_list_positive)
|
95 |
+
else: raise ValueError(f"Shape incorrecta para ids: = [
|
96 |
+
"optimal centering", "optimal inspiration", "optimal penetration",
|
97 |
+
"complete field of view {ids.shape}, esperado {expected_shape}")
|
98 |
+
if paddings", "scapulae retracted", "sharp image", "artifact free"
|
99 |
+
].shape != expected_shape:
|
100 |
+
if paddings.shape == (
|
101 |
+
criteria_list_negative = [
|
102 |
+
"poorly centered", "1,128): paddings = np.expand_dims(paddings, axis=1)poor inspiration", "non-diagnostic exposure",
|
103 |
+
"cropped image", "scapulae overlying lungs
|
104 |
else: raise ValueError(f"Shape incorrecta para paddings: {paddings.shape}, esperado {expected_shape}")
|
105 |
+
|
106 |
return ids, paddings
|
107 |
|
108 |
+
", "blurred image", "obscuring artifact"
|
109 |
+
]
|
110 |
+
|
111 |
+
# --- Funciones Auxiliadef png_to_tfexample(image_array: np.ndarray) -> tf.train.Example:
|
112 |
+
"""Crea tf.train.Example desde NumPy array (res (Integradas o adaptadas) ---
|
113 |
+
def bert_tokenize(text, preprocessor):
|
114 |
+
escala de grises)."""
|
115 |
+
if image_array.ndim == """Tokeniza texto usando el preprocesador BERT cargado globalmente."""
|
116 |
+
if 3 and image_array.shape[2] == 1:
|
117 |
+
preprocessor is None: raise ValueError("BERT preprocessor no está cargado.") image_array = np.squeeze(image_array, axis=2) # Asegurar 2D
|
118 |
elif image_array.ndim != 2:
|
119 |
+
raise ValueError(f'Array debe ser 2-D (
|
120 |
+
if not isinstance(text, str): text = str(text)escala de grises). Dimensiones actuales: {image_array.ndim
|
121 |
+
|
122 |
+
out = preprocessor(tf.constant([text.lower()]))}')
|
123 |
+
|
124 |
image = image_array.astype(np.float32)
|
125 |
+
min
|
126 |
+
ids = out['input_word_ids'].numpy().astype(_val = image.min()
|
127 |
+
max_val = image.max()
|
128 |
+
|
129 |
+
np.int32)
|
130 |
+
masks = out['input_mask'].# Evitar división por cero si la imagen es constante
|
131 |
+
if max_val <= min_val:numpy().astype(np.float32)
|
132 |
+
paddings =
|
133 |
+
# Si es constante, tratar como uint8 si el rango original lo permitía,
|
134 |
+
1.0 - masks
|
135 |
+
end_token_idx = (ids == 102)
|
136 |
+
# o simplemente ponerla a 0 si es float.
|
137 |
+
if image_array. ids[end_token_idx] = 0
|
138 |
+
paddings[end_token_idx] = 1.0
|
139 |
+
|
140 |
+
if ids.ndim == 2dtype == np.uint8 or (min_val >= 0 and max: ids = np.expand_dims(ids, axis=1)
|
141 |
+
if paddings.ndim == 2: paddings = np.expand_val <= 255):
|
142 |
+
pixel_array = image._dims(paddings, axis=1)
|
143 |
+
|
144 |
+
expected_shape = (1,astype(np.uint8)
|
145 |
+
bitdepth = 8
|
146 |
+
1, 128)
|
147 |
+
if ids.shape != expectedelse: # Caso flotante constante o fuera de rango uint8
|
148 |
+
pixel__shape:
|
149 |
+
if ids.shape == (1,128): ids = np.expand_dims(ids, axis=1)
|
150 |
+
else: raise ValueErrorarray = np.zeros_like(image, dtype=np.uint1(f"Shape incorrecta para ids: {ids.shape}, esperado {6)
|
151 |
+
bitdepth = 16
|
152 |
else:
|
153 |
+
expected_shape}")
|
154 |
+
if paddings.shape != expected_shape:image -= min_val # Mover mínimo a cero
|
155 |
+
current_max = max_val -
|
156 |
+
if paddings.shape == (1,128): padd min_val
|
157 |
+
# Escalar a 16-bit para mayor precisión si noings = np.expand_dims(paddings, axis=1) era uint8 originalmente
|
158 |
if image_array.dtype != np.uint8:
|
159 |
+
else: raise ValueError(f"Shape incorrecta para paddings:
|
160 |
image *= 65535 / current_max
|
161 |
+
pixel_array = {paddings.shape}, esperado {expected_shape}")
|
162 |
+
|
163 |
+
return ids, paddings
|
164 |
+
|
165 |
+
image.astype(np.uint16)
|
166 |
+
bitdepth = def png_to_tfexample(image_array: np.ndarray)16
|
167 |
else:
|
168 |
+
# Si era uint8, mantener el rango y tipo
|
169 |
+
# La resta del min ya la dejó en [0, current_max]
|
170 |
+
-> tf.train.Example:
|
171 |
+
"""Crea tf.train.Example desde NumPy array ( # Escalar a 255 si es necesario
|
172 |
+
image *= 255 / current_escala de grises)."""
|
173 |
+
if image_array.ndim ==max
|
174 |
+
pixel_array = image.astype(np.uint8) 3 and image_array.shape[2] == 1:
|
175 |
+
|
176 |
+
bitdepth = 8
|
177 |
+
|
178 |
+
# Codificar como PNG
|
179 |
+
output = io.Bytes image_array = np.squeeze(image_array, axis=2IO()
|
180 |
+
png.Writer(
|
181 |
+
width=pixel_array.) # Asegurar 2D
|
182 |
+
elif image_array.ndim != 2shape[1],
|
183 |
+
height=pixel_array.shape[0],:
|
184 |
+
raise ValueError(f'Array debe ser 2-D (
|
185 |
+
greyscale=True,
|
186 |
+
bitdepth=bitdepth
|
187 |
+
escala de grises). Dimensiones actuales: {image_array.ndim).write(output, pixel_array.tolist())
|
188 |
+
png_bytes = output.getvalue()
|
189 |
+
|
190 |
+
}')
|
191 |
+
|
192 |
+
image = image_array.astype(np.float32)
|
193 |
+
min_val # Crear tf.train.Example
|
194 |
example = tf.train.Example()
|
195 |
+
, max_val = image.min(), image.max()
|
196 |
+
|
197 |
+
if features = example.features.feature
|
198 |
+
features['image/encoded']. max_val <= min_val: # Imagen constante
|
199 |
+
if image_array.dtype == np.uint8 or (min_val >= 0 and max_bytes_list.value.append(png_bytes)
|
200 |
features['image/format'].bytes_list.value.append(b'png')
|
201 |
return example
|
202 |
|
203 |
+
def generate_image_embedding(img_np,val <= 255):
|
204 |
+
pixel_array = image.astype(np.uint8); bitdepth = 8
|
205 |
+
else:
|
206 |
+
pixel_array = np.zeros_like(image elixrc_infer, qformer_infer):
|
207 |
+
"""Genera embedding final, dtype=np.uint16); bitdepth = 16
|
208 |
+
else: # Imagen con rango
|
209 |
+
image -= min_val
|
210 |
+
current_max = max_val - min de imagen."""
|
211 |
+
if elixrc_infer is None or qformer_infer is None:
|
212 |
+
raise ValueError("Modelos ELIXR-C o Q_val
|
213 |
+
if image_array.dtype != np.uint8: #Former no cargados.")
|
214 |
+
|
215 |
try:
|
216 |
+
# 1. EL Escalar a 16-bit si no era uint8
|
217 |
+
image *= 6IXR-C
|
218 |
+
serialized_img_tf_example = png_5535 / current_max
|
219 |
+
pixel_array = image.to_tfexample(img_np).SerializeToString()
|
220 |
+
elixrc_output = elixrcastype(np.uint16); bitdepth = 16
|
221 |
+
_infer(input_example=tf.constant([serialized_img_tf_example]))else: # Mantener rango uint8
|
222 |
+
image *= 255 / current_max
|
223 |
+
pixel_array = image.astype(np.uint
|
224 |
elixrc_embedding = elixrc_output['feature_maps_0'].numpy()
|
225 |
+
8); bitdepth = 8
|
226 |
+
|
227 |
+
output = io.BytesIO()
|
228 |
+
png.Writer(width=pixel_array.shape[1], height=pixel_array.shape print(f" Embedding ELIXR-C shape: {elixrc_embedding.[0], greyscale=True, bitdepth=bitdepth).write(shape}")
|
229 |
+
|
230 |
+
# 2. QFormer (Imagen)
|
231 |
+
qformer_input_output, pixel_array.tolist())
|
232 |
+
png_bytes = output.getvalue()
|
233 |
+
|
234 |
+
example = tf.train.Example()
|
235 |
+
features = example.features.feature
|
236 |
+
features['image/encoded'].bytes_list.value.img = {
|
237 |
'image_feature': elixrc_embedding.tolist(),
|
238 |
+
append(png_bytes)
|
239 |
+
features['image/format'].bytes_ 'ids': np.zeros((1, 1, 12list.value.append(b'png')
|
240 |
+
return example
|
241 |
+
|
242 |
+
def8), dtype=np.int32).tolist(), # Texto vacío
|
243 |
+
'paddings': generate_image_embedding(img_np, elixrc_infer, np.ones((1, 1, 128), dtype= qformer_infer):
|
244 |
+
"""Genera embedding final de imagen."""
|
245 |
+
if elixnp.float32).tolist(), # Todo padding
|
246 |
}
|
247 |
+
qformer_output_img = qformer_infer(**qformer_input_imgrc_infer is None or qformer_infer is None: raise ValueError(")
|
248 |
+
image_embedding = qformer_output_img['all_contrastive_imgModelos ELIXR-C o QFormer no cargados.")
|
249 |
+
_emb'].numpy()
|
250 |
+
|
251 |
+
# Ajustar dimensiones si es necesario
|
252 |
+
if image_try:
|
253 |
+
# 1. ELIXR-C
|
254 |
+
serialized_embedding.ndim > 2:
|
255 |
+
print(f" Ajustimg_tf_example = png_to_tfexample(img_npando dimensiones embedding imagen (original: {image_embedding.shape})")
|
256 |
+
).SerializeToString()
|
257 |
+
elixrc_output = elixrc_infer( image_embedding = np.mean(
|
258 |
+
image_embedding,
|
259 |
+
input_example=tf.constant([serialized_img_tf_example])) axis=tuple(range(1, image_embedding.ndim -
|
260 |
+
elixrc_embedding = elixrc_output['feature_maps_0'].numpy1))
|
261 |
+
)
|
262 |
+
if image_embedding.ndim == 1()
|
263 |
+
print(f" Embedding ELIXR-C shape: {elixrc_embedding.:
|
264 |
+
image_embedding = np.expand_dims(image_embedding, axis=0)
|
265 |
+
elif image_embedding.ndim == 1:
|
266 |
+
shape}")
|
267 |
+
|
268 |
+
# 2. QFormer (Imagen)
|
269 |
+
qformer_input_ image_embedding = np.expand_dims(image_embedding, axis=0) # Asegurar 2D
|
270 |
+
|
271 |
+
print(f" Embedding final imagen shape: {image_embedding.shape}")
|
272 |
+
if image_embedding.ndimimg = {
|
273 |
+
'image_feature': elixrc_embedding.tolist(),
|
274 |
+
!= 2:
|
275 |
+
raise ValueError(f"Embedding final de imagen no tiene 2 dimensiones: { 'ids': np.zeros((1, 1, 12image_embedding.shape}")
|
276 |
return image_embedding
|
|
|
|
|
277 |
|
278 |
+
except Exception8), dtype=np.int32).tolist(), # Texto vacío
|
279 |
+
'paddings as e:
|
280 |
+
print(f"Error generando embedding de imagen: {e}")
|
281 |
+
': np.ones((1, 1, 128), dtype=np.floattraceback.print_exc()
|
282 |
+
raise # Re-lanzar32).tolist(), # Todo padding
|
283 |
+
}
|
284 |
+
qformer_output_img = qformer_ la excepción para que Gradio la maneje
|
285 |
+
|
286 |
+
def calculate_similarities_and_classify(infer(**qformer_input_img)
|
287 |
+
image_embedding = qformer_output_image_embedding, bert_preprocessor, qformer_infer):
|
288 |
+
img['all_contrastive_img_emb'].numpy()
|
289 |
+
|
290 |
+
# Ajustar dimensiones
|
291 |
+
if"""Calcula similitudes y clasifica."""
|
292 |
+
if image_embedding is None: raise ValueError("Embedding image_embedding.ndim > 2:
|
293 |
+
print(f" Ajustando de imagen es None.")
|
294 |
+
if bert_preprocessor is None: raise ValueError("Preprocesador BERT es dimensiones embedding imagen (original: {image_embedding.shape})")
|
295 |
+
image_embedding = np.mean(image_embedding, axis=tuple( None.")
|
296 |
+
if qformer_infer is None: raise ValueError("Qrange(1, image_embedding.ndim - 1)))
|
297 |
+
if image_embedding.ndim == Former es None.")
|
298 |
detailed_results = {}
|
299 |
+
print("\n--- Calculando similitudes y clasific1: image_embedding = np.expand_dims(image_embedding,ando ---")
|
300 |
+
|
301 |
for i in range(len(criteria_list_positive)):
|
302 |
+
axis=0) # Asegurar 2D
|
303 |
+
print(f" Embedding final imagen shapepositive_text = criteria_list_positive[i]
|
304 |
+
negative_: {image_embedding.shape}")
|
305 |
+
if image_embedding.ndimtext = criteria_list_negative[i]
|
306 |
+
criterion_name = != 2: raise ValueError(f"Embedding final imagen no tiene 2 dims positive_text # Usar prompt positivo como clave
|
307 |
+
|
308 |
+
print(f": {image_embedding.shape}")
|
309 |
+
return image_embedding
|
310 |
+
except Exception as e:
|
311 |
+
Procesando criterio: \"{criterion_name}\"")
|
312 |
+
similarity_positive, similarity print(f"Error generando embedding imagen: {e}"); traceback.print_exc(); raise
|
313 |
+
|
314 |
+
def calculate_similarities_and_classify(image_embedding, bert_preprocessor_negative, difference = None, None, None
|
315 |
classification_comp, classification_simp = "ERROR", "ERROR"
|
316 |
+
|
317 |
try:
|
318 |
+
#, qformer_infer):
|
319 |
+
"""Calcula similitudes y clasifica."""
|
320 |
+
if image_embedding is None: raise ValueError("Embedding imagen es None.")
|
321 |
+
if bert_ 1. Embedding Texto Positivo
|
322 |
+
tokens_pos, paddings_pos = bert_tokenize(preprocessor is None: raise ValueError("Preprocesador BERT es None.")
|
323 |
+
if qformer_positive_text, bert_preprocessor)
|
324 |
+
qformer_input_infer is None: raise ValueError("QFormer es None.")
|
325 |
+
detailed_results = {}
|
326 |
+
print("\n--- Calculando similitudes y clasificando ---")
|
327 |
+
for i intext_pos = {
|
328 |
+
'image_feature': np.zeros([ range(len(criteria_list_positive)):
|
329 |
+
positive_text,1, 8, 8, 1376], dtype= negative_text = criteria_list_positive[i], criteria_list_np.float32).tolist(), # Dummy
|
330 |
+
'ids': tokensnegative[i]
|
331 |
+
criterion_name = positive_text # Usar prompt positivo_pos.tolist(), 'paddings': paddings_pos.tolist(),
|
332 |
+
}
|
333 |
+
text como clave
|
334 |
+
print(f"Procesando criterio: \"{criterion_name}\"_embedding_pos = qformer_infer(**qformer_input_text")
|
335 |
+
similarity_positive, similarity_negative, difference = None, None, None
|
336 |
+
classification__pos)['contrastive_txt_emb'].numpy()
|
337 |
+
if text_embedding_poscomp, classification_simp = "ERROR", "ERROR"
|
338 |
+
try:.ndim == 1: text_embedding_pos = np.expand_
|
339 |
+
# 1. Embeddings de Texto
|
340 |
+
tokens_pos, paddings_pos = bert_tokenize(positive_text, bert_preprocessordims(text_embedding_pos, axis=0)
|
341 |
+
|
342 |
+
# )
|
343 |
+
qformer_input_pos = {'image_feature': np2. Embedding Texto Negativo
|
344 |
+
tokens_neg, paddings_neg.zeros([1, 8, 8, 1376 = bert_tokenize(negative_text, bert_preprocessor)
|
345 |
+
qformer_input_text], dtype=np.float32).tolist(), 'ids': tokens_pos.tolist(), 'padd_neg = {
|
346 |
+
'image_feature': np.zeros([1ings': paddings_pos.tolist()}
|
347 |
+
text_embedding_pos = qformer_infer(**qformer_input_pos)['contrastive_txt_emb'].numpy(), 8, 8, 1376], dtype=np
|
348 |
+
if text_embedding_pos.ndim == 1: text_embedding_pos = np.expand_dims(text_embedding_pos, axis=0).float32).tolist(), # Dummy
|
349 |
+
'ids': tokens_neg.tolist(), 'paddings': paddings_neg.tolist(),
|
350 |
|
351 |
tokens_neg, paddings_neg = bert_tokenize(negative_text, bert_preprocessor)
|
352 |
+
qformer_input_neg
|
353 |
+
}
|
354 |
+
text_embedding_neg = qformer_infer(** = {'image_feature': np.zeros([1, 8, qformer_input_text_neg)['contrastive_txt_emb'].numpy()
|
355 |
+
if text_embedding_neg.ndim == 1: text_embedding_neg8, 1376], dtype=np.float32). = np.expand_dims(text_embedding_neg, axis=0tolist(), 'ids': tokens_neg.tolist(), 'paddings':)
|
356 |
+
|
357 |
+
# Verificar compatibilidad de dimensiones para similitud
|
358 |
+
if image_embedding paddings_neg.tolist()}
|
359 |
+
text_embedding_neg = qformer_infer(**qformer_input_neg)['contrastive_txt_.shape[1] != text_embedding_pos.shape[1]:emb'].numpy()
|
360 |
+
if text_embedding_neg.ndim ==
|
361 |
+
raise ValueError(f"Dimensión incompatible: Imagen ({image_embedding.shape[11: text_embedding_neg = np.expand_dims(text_embedding_neg, axis=0)
|
362 |
+
|
363 |
+
# Verificar dimensiones
|
364 |
+
if image_embedding.shape]}) vs Texto Pos ({text_embedding_pos.shape[1]})")
|
365 |
+
if[1] != text_embedding_pos.shape[1]: raise ValueError(f"Dim mismatch: Img ({image_embedding.shape[1]}) vs Pos ({text_embedding_pos.shape[1]})")
|
366 |
+
if image_embedding image_embedding.shape[1] != text_embedding_neg.shape.shape[1] != text_embedding_neg.shape[1]: raise ValueError(f"Dim mismatch: Img ({image_embedding.shape[1]:
|
367 |
+
raise ValueError(f"Dimensión incompatible: Imagen ({image_embedding.shape[1[1]}) vs Neg ({text_embedding_neg.shape[1]})")
|
368 |
+
|
369 |
+
# 2. Calcular Similitudes
|
370 |
+
similarity_positive = cosine_similarity(image]}) vs Texto Neg ({text_embedding_neg.shape[1]})")_embedding, text_embedding_pos)[0][0]
|
371 |
+
similarity_negative =
|
372 |
+
|
373 |
+
# 3. Calcular Similitudes
|
374 |
+
similarity_positive = cosine_similarity(image_embedding cosine_similarity(image_embedding, text_embedding_neg)[0][, text_embedding_pos)[0][0]
|
375 |
+
similarity_negative0]
|
376 |
+
|
377 |
+
# 3. Clasificar
|
378 |
+
difference = similarity_positive - similarity = cosine_similarity(image_embedding, text_embedding_neg)[0_negative
|
379 |
+
classification_comp = "PASS" if difference > SIMILARITY_DIFFERENCE][0]
|
380 |
+
print(f" Sim (+)={similarity_positive_THRESHOLD else "FAIL"
|
381 |
+
classification_simp = "PASS" if:.4f}, Sim (-)={similarity_negative:.4f}")
|
382 |
+
|
383 |
+
similarity_positive > POSITIVE_SIMILARITY_THRESHOLD else "FAIL"# 4. Clasificar
|
384 |
+
difference = similarity_positive - similarity_
|
385 |
+
print(f" Sim(+)={similarity_positive:.4f},negative
|
386 |
+
classification_comp = "PASS" if difference > SIMILARITY_DIFFERENCE Sim(-)={similarity_negative:.4f}, Diff={difference:.4f_THRESHOLD else "FAIL"
|
387 |
+
classification_simp = "PASS" if} -> Comp:{classification_comp}, Simp:{classification_simp}")
|
388 |
+
except Exception as similarity_positive > POSITIVE_SIMILARITY_THRESHOLD else "FAIL" e:
|
389 |
+
print(f" ERROR procesando criterio '{criterion_name}': {e}"); traceback.print_exc()
|
390 |
+
# Mantener clasificaciones como "ERROR
|
391 |
+
print(f" Diff={difference:.4f} -> Comp: {classification_comp},"
|
392 |
+
detailed_results[criterion_name] = {
|
393 |
+
'positive_prompt': Simp: {classification_simp}")
|
394 |
|
395 |
+
except Exception as e:
|
396 |
+
print(f" ERROR procesando criterio '{criterion_name}': {e}")
|
397 |
+
traceback.print_exc()
|
398 |
+
# Mantener clasificaciones como "ERROR" positive_text, 'negative_prompt': negative_text,
|
399 |
+
'similarity_positive': float(similarity_positive) if similarity_positive is not None else None,
|
400 |
|
|
|
|
|
401 |
|
402 |
+
# Guardar resultados
|
|
|
|
|
|
|
|
|
|
|
403 |
detailed_results[criterion_name] = {
|
404 |
+
'similarity_negative': float(similarity_negative) if similarity_negative'positive_prompt': positive_text,
|
405 |
+
'negative_prompt': is not None else None,
|
406 |
+
'difference': float(difference) if negative_text,
|
407 |
+
'similarity_positive': float(similarity_positive difference is not None else None,
|
408 |
+
'classification_comparative': classification) if similarity_positive is not None else None,
|
409 |
+
'similarity__comp, 'classification_simplified': classification_simp
|
410 |
}
|
411 |
+
return detailed_resultsnegative': float(similarity_negative) if similarity_negative is not None else None,
|
412 |
+
'difference': float(difference) if difference is not None
|
413 |
|
414 |
# --- Carga Global de Modelos ---
|
415 |
+
print("--- Iniciando carga global de modelos else None,
|
416 |
+
'classification_comparative': classification_comp,
|
417 |
+
---")
|
418 |
start_time = time.time()
|
419 |
models_loaded = False
|
420 |
bert_preprocessor_global = None
|
421 |
+
elixrc_infer 'classification_simplified': classification_simp
|
422 |
+
}
|
423 |
+
return detailed_results
|
424 |
+
|
425 |
+
# ---_global = None
|
426 |
qformer_infer_global = None
|
427 |
+
try: Carga Global de Modelos ---
|
428 |
+
# Se ejecuta UNA VEZ al iniciar la
|
429 |
+
hf_token = os.environ.get("HF_TOKEN") # Leer aplicación Gradio/Space
|
430 |
+
print("--- Iniciando carga global de modelos ---")
|
431 |
+
start_ token desde secretos del Space
|
432 |
+
if hf_token: print("HFtime = time.time()
|
433 |
+
models_loaded = False
|
434 |
+
bert_pre_TOKEN encontrado, usando para autenticación.")
|
435 |
+
|
436 |
+
os.makedirs(MODEL_DOWNLOADprocessor_global = None
|
437 |
+
elixrc_infer_global = None
|
438 |
+
_DIR, exist_ok=True)
|
439 |
+
print(f"Descargando/verificando modelos en: {MODEL_DOWNLOAD_DIR}")qformer_infer_global = None
|
440 |
|
441 |
+
try:
|
442 |
+
# Añadir token si
|
443 |
snapshot_download(repo_id=MODEL_REPO_ID, local_dir=MODEL_DOWNLOAD_DIR,
|
444 |
+
allow_patterns=['elixr es necesario (para repos privados o gated)
|
445 |
+
hf_token = os.environ.get("-c-v2-pooled/*', 'pax-elixr-b-text/*'],
|
446 |
local_dir_use_symlinks=False, token=hf_token) # Pasar token aquí
|
447 |
print("Modelos descargados/verificados.")
|
448 |
|
449 |
+
HF_TOKEN") # Leer token desde secretos del Space
|
450 |
+
# if hf_token:
|
451 |
+
print("Cargando Preprocesador BERT...")
|
452 |
+
bert_preprocess# print("Usando HF_TOKEN para autenticación.")
|
453 |
+
# # HfFolder.save_token(hf_token) # Esto no siempre funciona bien en entornos server_handle = "https://tfhub.dev/tensorflow/bert_enless
|
454 |
+
|
455 |
+
# Crear directorio si no existe
|
456 |
+
os.makedirs(MODEL_DOWNLOAD_DIR_uncased_preprocess/3"
|
457 |
+
bert_preprocessor_global, exist_ok=True)
|
458 |
+
print(f"Descargando/verificando modelos en = tf_hub.KerasLayer(bert_preprocess_handle)
|
459 |
+
print("Preprocesador BERT: {MODEL_DOWNLOAD_DIR}")
|
460 |
+
snapshot_download(repo_id=MODEL cargado.")
|
461 |
+
|
462 |
+
print("Cargando ELIXR-C...")_REPO_ID, local_dir=MODEL_DOWNLOAD_DIR,
|
463 |
+
|
464 |
+
elixrc_model_path = os.path.join( allow_patterns=['elixr-c-v2-pooled/*', 'pax-elixrMODEL_DOWNLOAD_DIR, 'elixr-c-v2--b-text/*'],
|
465 |
+
local_dir_use_symlinkspooled')
|
466 |
+
elixrc_model = tf.saved_model.=False, # Evitar symlinks
|
467 |
+
token=hf_token) # Pasar tokenload(elixrc_model_path)
|
468 |
elixrc_infer_global = elixrc_model.signatures['serving_default']
|
469 |
+
print("Modelo aquí
|
470 |
+
print("Modelos descargados/verificados.")
|
471 |
+
|
472 |
+
# C ELIXR-C cargado.")
|
473 |
|
474 |
+
print("Cargando Qargar Preprocesador BERT desde TF Hub
|
475 |
+
print("Cargando Preprocesador BERT...")
|
476 |
+
Former (ELIXR-B Text)...")
|
477 |
+
qformer_model_path = os.path.join(MODEL_DOWNLOAD_DIR, '# Usar handle explícito puede ser más robusto en algunos entornos
|
478 |
+
bert_preprocess_pax-elixr-b-text')
|
479 |
+
qformer_handle = "https://tfhub.dev/tensorflow/bert_en_model = tf.saved_model.load(qformer_model_pathuncased_preprocess/3"
|
480 |
+
bert_preprocessor_global =)
|
481 |
qformer_infer_global = qformer_model.signatures['serving_default']
|
482 |
+
tf_hub.KerasLayer(bert_preprocess_handle)
|
483 |
print("Modelo QFormer cargado.")
|
484 |
|
485 |
models_loaded = True
|
486 |
+
end_print("Preprocesador BERT cargado.")
|
487 |
+
|
488 |
+
# Cargar ELIXR-C
|
489 |
+
print("Cargando ELIXR-C...")
|
490 |
+
elixrctime = time.time()
|
491 |
+
print(f"--- Modelos cargados global_model_path = os.path.join(MODEL_DOWNLOAD_DIRmente con éxito en {end_time - start_time:.2f}, 'elixr-c-v2-pooled')
|
492 |
+
el segundos ---")
|
493 |
except Exception as e:
|
494 |
models_loaded = False
|
495 |
+
print(ixrc_model = tf.saved_model.load(elixrcf"--- ERROR CRÍTICO DURANTE LA CARGA GLOBAL DE MODELOS_model_path)
|
496 |
+
elixrc_infer_global = el ---"); print(e); traceback.print_exc()
|
497 |
|
498 |
+
# --- Función Principal de Procesamiento paraixrc_model.signatures['serving_default']
|
499 |
+
print("Modelo Gradio ---
|
500 |
+
def assess_quality_and_update_ui(image ELIXR-C cargado.")
|
501 |
+
|
502 |
+
# Cargar QFormer (_pil):
|
503 |
+
"""Procesa la imagen y devuelve actualizaciones para la UI."""ELIXR-B Text)
|
504 |
+
print("Cargando QFormer
|
505 |
if not models_loaded:
|
506 |
+
raise gr.Error("Error: Los (ELIXR-B Text)...")
|
507 |
+
qformer_model_ modelos no se pudieron cargar. La aplicación no puede procesar imágenes.")
|
508 |
+
if image_pil is Nonepath = os.path.join(MODEL_DOWNLOAD_DIR, 'p:
|
509 |
# Devuelve valores por defecto/vacíos y controla la visibilidad
|
510 |
return (
|
511 |
+
ax-elixr-b-text')
|
512 |
+
qformer_model gr.update(visible=True), # Muestra bienvenida
|
513 |
+
gr.update(visible= = tf.saved_model.load(qformer_model_path)
|
514 |
+
qformer_infer_global = qformer_model.signatures['False), # Oculta resultados
|
515 |
+
None, # Borra imagen de salidaserving_default']
|
516 |
+
print("Modelo QFormer cargado.")
|
517 |
+
|
518 |
+
|
519 |
gr.update(value="N/A"), # Borra etiqueta
|
520 |
+
pdmodels_loaded = True
|
521 |
+
end_time = time.time()
|
522 |
+
.DataFrame(), # Borra dataframe
|
523 |
None # Borra JSON
|
524 |
)
|
525 |
|
526 |
print("\n--- Iniciando evaluación para nueva imagen ---")
|
527 |
+
start print(f"--- Modelos cargados globalmente con éxito en {end_time_process_time = time.time()
|
528 |
try:
|
529 |
+
# - start_time:.2f} segundos ---")
|
530 |
+
|
531 |
+
except Exception as e:
|
532 |
+
models_loaded = False
|
533 |
+
print(f"--- ERROR CRÍTICO DUR 1. Convertir a NumPy
|
534 |
+
img_np = np.arrayANTE LA CARGA GLOBAL DE MODELOS ---")
|
535 |
+
print(e)
|
536 |
+
traceback.print_(image_pil.convert('L'))
|
537 |
+
print(f"Imagenexc()
|
538 |
+
# Gradio se iniciará, pero la función de análisis fallará. convertida a NumPy. Shape: {img_np.shape}, Tipo:
|
539 |
+
|
540 |
+
# --- Función Principal de Procesamiento para Gradio ---
|
541 |
+
def assess_quality_and_ {img_np.dtype}")
|
542 |
+
# 2. Generar Embeddingupdate_ui(image_pil):
|
543 |
+
"""Procesa la imagen y devuelve actualizaciones
|
544 |
+
print("Generando embedding de imagen...")
|
545 |
+
image_embedding = generate_image_embedding(img_np, elixrc_infer_global, q para la UI."""
|
546 |
+
if not models_loaded:
|
547 |
+
raise grformer_infer_global)
|
548 |
+
print("Embedding de imagen generado.")
|
549 |
+
.Error("Error: Los modelos no se pudieron cargar. La aplicación no puede procesar imágenes.")
|
550 |
# 3. Clasificar
|
551 |
+
print("Calculando similitudes y clasificando criterios if image_pil is None:
|
552 |
+
# Devuelve valores por defecto/vacíos...")
|
553 |
+
detailed_results = calculate_similarities_and_classify(image_embedding, bert_preprocessor_global, qformer_infer_ y controla la visibilidad
|
554 |
+
return (
|
555 |
+
gr.update(visible=Trueglobal)
|
556 |
+
print("Clasificación completada.")
|
557 |
+
# ), # Muestra bienvenida
|
558 |
+
gr.update(visible=False), # Oculta resultados
|
559 |
+
4. Formatear Resultados
|
560 |
+
output_data, passed_count,None, # Borra imagen de salida
|
561 |
+
gr.update(value="N/A total_count = [], 0, 0
|
562 |
+
for criterion, details in detailed_results.items"), # Borra etiqueta
|
563 |
+
pd.DataFrame(), # Borra dataframe():
|
564 |
total_count += 1
|
565 |
+
sim_pos = details
|
566 |
+
None # Borra JSON
|
567 |
+
)
|
568 |
+
|
569 |
+
print("\n--- Iniciando evaluación['similarity_positive']
|
570 |
+
sim_neg = details['similarity_negative para nueva imagen ---")
|
571 |
+
start_process_time = time.time']
|
572 |
diff = details['difference']
|
573 |
comp = details['classification_comparative']
|
574 |
simp = details['classification_simplified']
|
575 |
+
()
|
576 |
+
try:
|
577 |
+
# 1. Convertir a NumPy
|
578 |
+
img_np = np.array(image_pil.convert('Loutput_data.append([ criterion, f"{sim_pos:.4f}"'))
|
579 |
+
print(f"Imagen convertida a NumPy. Shape: {img_np.shape}, Tipo: {img_np.dtype}")
|
580 |
+
|
581 |
+
if sim_pos is not None else "N/A",
|
582 |
+
f"{sim_neg:. # 2. Generar Embedding de Imagen
|
583 |
+
print("Generando embedding4f}" if sim_neg is not None else "N/A", de imagen...")
|
584 |
+
image_embedding = generate_image_embedding(img f"{diff:.4f}" if diff is not None else "N/_np, elixrc_infer_global, qformer_infer_A", comp, simp ])
|
585 |
if comp == "PASS": passed_count += 1
|
586 |
+
global)
|
587 |
+
print("Embedding de imagen generado.")
|
588 |
+
|
589 |
+
# 3 df_results = pd.DataFrame(output_data, columns=[ "Criterion", "Sim (+)", "Sim (-)", "Difference", "Assessment (Comp)", "Assessment (Simp)" ])
|
590 |
+
overall_quality = "Error"; pass_. Calcular Similitudes y Clasificar
|
591 |
+
print("Calculando similitudesrate = 0
|
592 |
if total_count > 0:
|
593 |
+
y clasificando criterios...")
|
594 |
+
detailed_results = calculate_similarities_and_classify(pass_rate = passed_count / total_count
|
595 |
+
if pass_image_embedding, bert_preprocessor_global, qformer_infer_rate >= 0.85: overall_quality = "Excellent"
|
596 |
+
elif pass_rate >= global)
|
597 |
+
print("Clasificación completada.")
|
598 |
+
|
599 |
+
# 0.70: overall_quality = "Good"
|
600 |
+
elif pass4. Formatear Resultados para Gradio
|
601 |
+
output_data = []
|
602 |
+
passed_count = _rate >= 0.50: overall_quality = "Fair"0
|
603 |
+
total_count = 0
|
604 |
+
for criterion, details in detailed_results.items
|
605 |
else: overall_quality = "Poor"
|
606 |
+
quality_label():
|
607 |
+
total_count += 1
|
608 |
+
sim_pos = details['similarity_positive']
|
609 |
+
sim_neg = details['similarity_negative = f"{overall_quality} ({passed_count}/{total_count}']
|
610 |
+
diff = details['difference']
|
611 |
+
comp = details['classification passed)"
|
612 |
end_process_time = time.time()
|
613 |
+
print(f"--- Evaluación completada en {end_process_time - start_process_time:.2f} seg_comparative']
|
614 |
+
simp = details['classification_simplified']
|
615 |
+
---")
|
616 |
# Devolver resultados y actualizar visibilidad
|
617 |
return (
|
618 |
+
output_data.append([
|
619 |
+
criterion,
|
620 |
+
f"{sim_pos:.4f}"gr.update(visible=False), # Oculta bienvenida
|
621 |
gr.update(visible=True), # Muestra resultados
|
622 |
+
image_pil, # Muestra imagen if sim_pos is not None else "N/A",
|
623 |
+
f procesada
|
624 |
gr.update(value=quality_label), # Actualiza etiqueta
|
625 |
df_results, # Actualiza dataframe
|
626 |
+
detailed"{sim_neg:.4f}" if sim_neg is not None else_results # Actualiza JSON
|
627 |
)
|
628 |
+
except Exception as e "N/A",
|
629 |
+
f"{diff:.4f}" if diff:
|
630 |
+
print(f"Error durante procesamiento Gradio: {e}"); is not None else "N/A",
|
631 |
+
comp,
|
632 |
+
simp
|
633 |
+
])
|
634 |
+
traceback.print_exc()
|
635 |
+
raise gr.Error(f"Error procesando imagen: {str if comp == "PASS":
|
636 |
+
passed_count += 1
|
637 |
+
|
638 |
+
(e)}")
|
639 |
|
640 |
# --- Función para Resetear la UI ---
|
641 |
+
def reset_ui # Crear DataFrame
|
642 |
+
df_results = pd.DataFrame(output_data, columns():
|
643 |
print("Reseteando UI...")
|
644 |
return (
|
645 |
+
gr.update(visible==[
|
646 |
+
"Criterion", "Sim (+)", "Sim (-)", "Difference", "Assessment (CompTrue), # Muestra bienvenida
|
647 |
gr.update(visible=False), # Oculta resultados
|
648 |
+
None, # Borra imagen de)", "Assessment (Simp)"
|
649 |
+
])
|
650 |
+
|
651 |
+
# Calcular etiqueta de calidad general
|
652 |
+
overall_quality entrada
|
653 |
None, # Borra imagen de salida
|
654 |
gr.update(value="N/A"), # Borra etiqueta
|
655 |
+
pd = "Error"
|
656 |
+
pass_rate = 0
|
657 |
+
if total_count > 0:
|
658 |
+
.DataFrame(), # Borra dataframe
|
659 |
None # Borra JSON
|
660 |
)
|
661 |
|
662 |
# --- Definir Tema Oscuro Personalizado ---
|
663 |
+
# Inspirado en los colores del HTML original y pass_rate = passed_count / total_count
|
664 |
+
if pass Tailwind dark grays/blues
|
665 |
+
dark_theme = gr.themes.Default_rate >= 0.85: overall_quality = "Excellent"
|
666 |
+
elif pass_rate >=(
|
667 |
primary_hue=gr.themes.colors.blue, # Azul como color primario
|
668 |
+
secondary_hue=gr.themes.colors.blue, 0.70: overall_quality = "Good"
|
669 |
+
elif # Azul secundario
|
670 |
+
neutral_hue=gr.themes.colors pass_rate >= 0.50: overall_quality = "Fair.gray, # Gris neutro
|
671 |
+
font=[gr.themes.GoogleFont("Inter"
|
672 |
+
else: overall_quality = "Poor"
|
673 |
+
quality_"), "ui-sans-serif", "system-ui", "sans-label = f"{overall_quality} ({passed_count}/{total_countserif"],
|
674 |
+
font_mono=[gr.themes.GoogleFont("Jet} passed)"
|
675 |
+
|
676 |
+
end_process_time = time.time()
|
677 |
+
print(f"---Brains Mono"), "ui-monospace", "Consolas", "monospace"],
|
678 |
+
Evaluación completada en {end_process_time - start_process_time:.2f} segundos ---).set(
|
679 |
# Fondos
|
680 |
body_background_fill="#111827", # Fondo principal muy oscuro (gray-900)
|
681 |
+
background_fill_primary="#1f2937",")
|
682 |
+
|
683 |
+
# Devolver resultados y actualizar visibilidad
|
684 |
+
return (
|
685 |
+
# Fondo de componentes (gray-800)
|
686 |
+
background_fill_secondary="#3gr.update(visible=False), # Oculta bienvenida
|
687 |
+
gr.update(visible=74151", # Fondo secundario (gray-700)
|
688 |
+
block_background_fill="#1f2937", True), # Muestra resultados
|
689 |
+
image_pil, # Muestra imagen# Fondo de bloques (gray-800)
|
690 |
|
691 |
# Texto
|
692 |
+
procesada
|
693 |
+
gr.update(value=quality_label), # Actualiza etiqueta
|
694 |
+
df body_text_color="#d1d5db", # Texto_results, # Actualiza dataframe
|
695 |
+
detailed_results # Actualiza JSON
|
696 |
+
)
|
697 |
+
except Exception as e:
|
698 |
+
print(f"Error durante principal claro (gray-300)
|
699 |
+
# text_color_subdued="# procesamiento Gradio: {e}")
|
700 |
+
traceback.print_exc()
|
701 |
+
9ca3af", # <-- LÍNEA PROBLEMÁTICA EL# Lanzar un gr.Error para mostrarlo en la UI de Gradio
|
702 |
+
raise gr.Error(f"Error procesando imagen: {str(e)}")
|
703 |
+
|
704 |
+
|
705 |
+
# --- Función para ResetearIMINADA
|
706 |
block_label_text_color="#d1d5db", # Etiquetas de bloque (gray-300)
|
707 |
+
block_title_text la UI ---
|
708 |
+
def reset_ui():
|
709 |
+
print("Reseteando UI...")
|
710 |
+
return (
|
711 |
+
gr.update(visible=True), # Muestra bienvenida
|
712 |
+
_color="#ffffff", # Títulos de bloque (blanco)
|
713 |
|
714 |
+
gr.update(visible=False), # Oculta resultados
|
715 |
+
# Bordes
|
716 |
+
border_color_accent="#374151",None, # Borra imagen de entrada
|
717 |
+
None, # Bor # Borde (gray-700)
|
718 |
+
border_colorra imagen de salida
|
719 |
+
gr.update(value="N/A"), # Borra etiqueta
|
720 |
+
_primary="#4b5563", # Borde primario (gray-pd.DataFrame(), # Borra dataframe
|
721 |
+
None # Borra JSON
|
722 |
+
)
|
723 |
+
|
724 |
+
600)
|
725 |
|
726 |
# Botones y Elementos Interactivos
|
727 |
+
# --- Definir Tema Oscuro Personalizado (CORREGIDO) ---
|
728 |
+
#button_primary_background_fill="*primary_600", # Usa color primario (azul)
|
729 |
button_primary_text_color="#ffffff",
|
730 |
+
Inspirado en los colores del HTML original y Tailwind dark grays/blues
|
731 |
+
dark_button_secondary_background_fill="*neutral_700",
|
732 |
button_secondary_text_color="#ffffff",
|
733 |
+
input_background_fill="#3theme = gr.themes.Default(
|
734 |
+
primary_hue=gr.74151", # Fondo de inputs (gray-700)
|
735 |
+
input_borderthemes.colors.blue, # Azul como color primario
|
736 |
+
secondary_hue=gr.themes.colors.blue, # Azul secundario
|
737 |
+
neutral_hue=gr_color="#4b5563", # Borde de inputs (gray-.themes.colors.gray, # Gris neutro
|
738 |
+
font=[gr.themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui", "sans600)
|
739 |
input_text_color="#ffffff", # Texto en inputs
|
740 |
|
741 |
# Sombras y Radios
|
742 |
+
shadow_drop="rgba(0,0,0,0-serif"],
|
743 |
+
font_mono=[gr.themes.GoogleFont("JetBrains Mono"), "ui.2) 0px 2px 4px",
|
744 |
+
block-monospace", "Consolas", "monospace"],
|
745 |
+
).set(
|
746 |
+
_shadow="rgba(0,0,0,0.2) # Fondos
|
747 |
+
body_background_fill="#111827", 0px 2px 5px",
|
748 |
+
radius_size="*# Fondo principal muy oscuro (gray-900)
|
749 |
+
background_fill_primaryradius_lg", # Bordes redondeados
|
750 |
)
|
751 |
|
752 |
|
753 |
+
# --- Definir la Interfaz Gradio con="#1f2937", # Fondo de componentes (gray-800)
|
754 |
+
Bloques y Tema ---
|
755 |
with gr.Blocks(theme=dark_theme, title="CXR Quality Assessment") as demo:
|
756 |
# --- Cabecera ---
|
757 |
with gr.Row():
|
758 |
gr.Markdown(
|
759 |
"""
|
760 |
+
# <span style="color: # background_fill_secondary="#374151", #e5e7eb;">CXR Quality Assessment</span>
|
761 |
+
<p style Fondo secundario (gray-700)
|
762 |
+
block_background_="color: #9ca3af;">Evaluate chest X-ray technical quality usingfill="#1f2937", # Fondo de bloques (gray-8 AI (ELIXR family)</p>
|
763 |
+
""",
|
764 |
+
elem_id="app-header00)
|
765 |
+
|
766 |
+
# Texto
|
767 |
+
body_text_color="#d1d5db", #"
|
768 |
)
|
769 |
|
770 |
# --- Contenido Principal (Dos Columnas) ---
|
771 |
+
with gr Texto principal claro (gray-300)
|
772 |
+
# text_color_subdued.Row(equal_height=False): # Permitir alturas diferentes
|
773 |
|
774 |
+
# --- Columna Iz="#9ca3af", # <--- ESTA LÍNEA CAUSABA EL ERROR Y FUE ELIMINADA/COMENTADA
|
775 |
+
block_label_text_color="#d1d5db", # Etiquetas de bloque (gray-300quierda (Carga) ---
|
776 |
+
with gr.Column(scale=1,)
|
777 |
+
block_title_text_color="#ffffff", # T min_width=350):
|
778 |
+
gr.Markdown("### ítulos de bloque (blanco)
|
779 |
+
|
780 |
+
# Bordes
|
781 |
+
border_1. Upload Image", elem_id="upload-title")
|
782 |
+
inputcolor_accent="#374151", # Borde (gray-70_image = gr.Image(type="pil", label="Upload Chest X-ray", height=300)
|
783 |
+
border_color_primary="#4b55630) # Altura fija para imagen entrada
|
784 |
with gr.Row():
|
785 |
+
", # Borde primario (gray-600)
|
786 |
+
|
787 |
+
analyze_btn = gr.Button("Analyze Image", variant="primary", scale=2)
|
788 |
reset_btn = gr.Button("Reset", variant="secondary", scale=1)
|
789 |
+
## Botones y Elementos Interactivos
|
790 |
+
button_primary_background_fill="*primary_600", # Usa color primario (azul)
|
791 |
+
button_primary_ Añadir ejemplos si tienes imágenes de ejemplo
|
792 |
# gr.Examples(
|
793 |
+
text_color="#ffffff",
|
794 |
+
button_secondary_background_fill="*neutral_700",# examples=[os.path.join("examples", "sample_cx
|
795 |
+
button_secondary_text_color="#ffffff",
|
796 |
+
input_background_fill="#3r.png")],
|
797 |
# inputs=input_image, label="Example CXR"
|
798 |
# )
|
799 |
gr.Markdown(
|
800 |
+
74151", # Fondo de inputs (gray-700)
|
801 |
+
input_border_color="#4b5563", # Borde de inputs (gray-"<p style='color:#9ca3af; font-size:0600)
|
802 |
+
input_text_color="#ffffff", #.9em;'>Model loading on startup takes ~1 min. Analysis takes ~15-40 sec.</p>"
|
803 |
)
|
804 |
|
805 |
|
806 |
# --- Columna Derecha (Bienvenida / Resultados) ---
|
807 |
+
Texto en inputs
|
808 |
+
|
809 |
+
# Sombras y Radios
|
810 |
+
shadow_dropwith gr.Column(scale=2):
|
811 |
+
|
812 |
+
# --- Bloque de Bienvenida (Visible Inicialmente="rgba(0,0,0,0.2) 0px) ---
|
813 |
+
with gr.Column(visible=True, elem_id 2px 4px",
|
814 |
+
block_shadow="rgba(0,0="welcome-section") as welcome_block:
|
815 |
+
gr.Markdown(,0,0.2) 0px 2px 5px",
|
816 |
+
radius_size="*radius_lg", # Bordes redondeados
|
817 |
+
)
|
818 |
+
|
819 |
+
|
820 |
|
|
|
|
|
|
|
821 |
"""
|
822 |
### Welcome!
|
823 |
+
Upload a chest X-ray image (# --- Definir la Interfaz Gradio con Bloques y Tema ---
|
824 |
+
with gr.Blocks(themePNG, JPG, etc.) on the left panel and click "Analyze Image".=dark_theme, title="CXR Quality Assessment") as demo:
|
825 |
+
|
826 |
|
827 |
+
The system will evaluate its technical quality based on 7 standard criteria using the ELIXR model family. # --- Cabecera ---
|
828 |
+
with gr.Row():
|
829 |
+
gr.Markdown
|
830 |
The results will appear here once the analysis is complete.
|
831 |
+
""",(
|
832 |
+
"""
|
833 |
+
# <span style="color: #e5e7eb;">CXR elem_id="welcome-text"
|
834 |
)
|
|
|
|
|
835 |
|
836 |
|
837 |
+
# --- Blo Quality Assessment</span>
|
838 |
+
<p style="color: #9ca3af;">Evaluate chest X-ray technical quality using AI (ELIXR family)</p>
|
839 |
+
que de Resultados (Oculto Inicialmente) ---
|
840 |
+
with gr.""", # Usar blanco/gris claro para texto cabecera
|
841 |
+
elem_id="app-header"
|
842 |
+
)
|
843 |
+
|
844 |
+
# --- Contenido Principal (DosColumn(visible=False, elem_id="results-section") as results Columnas) ---
|
845 |
+
with gr.Row(equal_height=False): # Permitir alturas diferentes
|
846 |
+
|
847 |
+
# --- Columna Izquierda (Carga) ---
|
848 |
+
with gr.Column(scale=1, min_width=_block:
|
849 |
+
gr.Markdown("### 2. Quality Assessment Results350):
|
850 |
+
gr.Markdown("### 1. Upload Image", elem_id="results-title")
|
851 |
+
with gr.Row(): # Fila para imagen de salida", elem_id="upload-title")
|
852 |
+
input_image = gr.Image(type y resumen
|
853 |
with gr.Column(scale=1):
|
854 |
output_image = gr.Image(type="pil", label="Analyzed Image", interactive=False)
|
855 |
+
with gr.Column(scale="pil", label="Upload Chest X-ray", height=300) # Altura fija para imagen entrada
|
856 |
+
with gr.Row():
|
857 |
+
analyze_btn = gr=1):
|
858 |
+
gr.Markdown("#### Summary", elem_id=".Button("Analyze Image", variant="primary", scale=2)
|
859 |
+
reset_btn = gr.Button("Reset", variant="secondary", scale=1)
|
860 |
+
#summary-title")
|
861 |
output_label = gr.Label(value="N/A", label="Overall Quality Estimate", elem_id="quality-label")
|
|
|
862 |
|
863 |
+
gr.Markdown Añadir ejemplos si tienes imágenes de ejemplo
|
864 |
+
# gr.Examples(
|
865 |
+
("#### Detailed Criteria Evaluation", elem_id="detailed-title")
|
866 |
+
output # examples=[os.path.join("examples", "sample__dataframe = gr.DataFrame(
|
867 |
+
headers=["Criterion", "Sim (+cxr.png")],
|
868 |
+
# inputs=input_image, label)", "Sim (-)", "Difference", "Assessment (Comp)", "Assessment (Simp)"],
|
869 |
label=None, # Quitar etiqueta redundante
|
870 |
wrap=True,
|
871 |
+
max="Example CXR"
|
872 |
+
# )
|
873 |
+
gr.Markdown(
|
874 |
+
"<p style='color:#9ca3af; font-size:0.9_rows=10, # Limitar filas visibles con scroll
|
875 |
overflow_row_behaviour="show_ends", # Muestra inicio/fin al hacer scroll
|
876 |
+
em;'>Model loading on startup takes ~1 min. Analysis takes ~15-4interactive=False, # No editable
|
877 |
elem_id="results-dataframe"
|
878 |
)
|
879 |
+
0 sec.</p>"
|
880 |
+
)
|
881 |
+
|
882 |
+
|
883 |
+
# --- Columna Derecha (Bienvenida / Resultados) ---
|
884 |
+
with gr.Column(scale=2): with gr.Accordion("Raw JSON Output (for debugging)", open=False
|
885 |
+
|
886 |
+
# --- Bloque de Bienvenida (Visible Inicialmente) ---
|
887 |
+
with gr.Column(visible=True, elem_id="welcome-section") as welcome_block:
|
888 |
+
gr.Markdown):
|
889 |
output_json = gr.JSON(label=None)
|
890 |
|
891 |
gr.Markdown(
|
892 |
f"""
|
893 |
#### Technical Notes
|
894 |
+
* **Criterion:** Quality(
|
895 |
+
"""
|
896 |
+
### Welcome!
|
897 |
+
Upload a chest X-ray image ( aspect evaluated.
|
898 |
* **Sim (+/-):** Cosine similarity with positive/negative prompt.
|
899 |
* **Difference:** Sim (+) - Sim (-).
|
900 |
+
*PNG, JPG, etc.) on the left panel and click "Analyze Image". **Assessment (Comp):** PASS if Difference > {SIMILARITY_DI
|
901 |
+
|
902 |
+
The system will evaluate its technical quality based on 7 standard criteria using the ELIXR model family.FFERENCE_THRESHOLD}. (Main Result)
|
903 |
+
* **Assessment (
|
904 |
+
The results will appear here once the analysis is complete.
|
905 |
+
""",Simp):** PASS if Sim (+) > {POSITIVE_SIMILARITY_THRESHOLD}.
|
906 |
""", elem_id="notes-text"
|
907 |
)
|
908 |
|
909 |
# --- Pie de página ---
|
910 |
gr.Markdown(
|
911 |
"""
|
912 |
+
elem_id="welcome-text"
|
913 |
+
)
|
914 |
+
# Podrías añadir un icono o----
|
915 |
+
<p style='text-align:center; color:#9 imagen aquí si quieres
|
916 |
+
# gr.Image("path/to/welcome_icon.pngca3af; font-size:0.8em;'>
|
917 |
+
C", interactive=False, show_label=False, show_download_button=FalseXR Quality Assessment Tool | Model: google/cxr-foundation | Interface: Gradio
|
918 |
</p>
|
919 |
""", elem_id="app-footer"
|
920 |
+
))
|
921 |
+
|
922 |
+
|
923 |
+
# --- Bloque de Resultados (Oculto Inicialmente) ---
|
924 |
+
with gr.
|
925 |
|
926 |
|
927 |
# --- Conexiones de Eventos ---
|
928 |
analyze_btn.click(
|
929 |
+
fnColumn(visible=False, elem_id="results-section") as results=assess_quality_and_update_ui,
|
930 |
+
inputs=[input_block:
|
931 |
+
gr.Markdown("### 2. Quality Assessment Results", elem_id="results_image],
|
932 |
outputs=[
|
933 |
+
welcome_block, # ->-title")
|
934 |
+
with gr.Row(): # Fila para imagen de salida actualiza visibilidad bienvenida
|
935 |
results_block, # -> actualiza visibilidad resultados
|
936 |
+
y resumen
|
937 |
+
with gr.Column(scale=1):
|
938 |
+
outputoutput_image, # -> muestra imagen analizada
|
939 |
output_label, # -> actualiza etiqueta resumen
|
940 |
output_dataframe, # -> actualiza tabla
|
941 |
+
output_image = gr.Image(type="pil", label="Analyzed Image_json # -> actualiza JSON
|
942 |
]
|
943 |
)
|
944 |
|
945 |
reset_btn.click(
|
946 |
fn=reset_ui,
|
947 |
+
inputs=None,", interactive=False)
|
948 |
+
with gr.Column(scale=1):
|
949 |
+
gr.Markdown("#### # No necesita inputs
|
950 |
outputs=[
|
951 |
welcome_block,
|
952 |
+
Summary", elem_id="summary-title")
|
953 |
+
output_label = gr.Label(valueresults_block,
|
954 |
+
input_image, # -> limpia imagen entrada="N/A", label="Overall Quality Estimate", elem_id="quality
|
955 |
output_image,
|
956 |
output_label,
|
957 |
output_dataframe,
|
|
|
959 |
]
|
960 |
)
|
961 |
|
962 |
+
# ----label")
|
963 |
+
# Podríamos añadir más texto de resumen aquí si quisiéramos
|
964 |
|
965 |
+
Iniciar la Aplicación Gradio ---
|
966 |
if __name__ == "__main__":
|
967 |
+
gr.Markdown("#### Detailed Criteria Evaluation", elem_id="detailed-title # server_name="0.0.0.0" para accesibilidad en red local
|
968 |
+
# server_port=7860 es el puerto estándar de HF")
|
969 |
+
output_dataframe = gr.DataFrame(
|
970 |
+
headers=["Criterion", "Sim (+)", "Sim (-)", "Difference", "Assessment (Comp)", "Assessment (Simp)"],
|
971 |
+
label=None, # Quitar etiqueta redundante
|
972 |
+
wrap=True,
|
973 |
+
# La altura ahora se maneja mejor automáticamente o con CSS
|
974 |
+
# row_count=(7, "dynamic Spaces
|
975 |
+
demo.launch(server_name="0.0.0") # Mostrar 7 filas, permitir scroll si hay más
|
976 |
+
max_rows=10, # Lim.0", server_port=7860)
|