farmax commited on
Commit
192a2fd
·
verified ·
1 Parent(s): 8ff9417

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +95 -58
app.py CHANGED
@@ -1,64 +1,101 @@
1
- import gradio as gr
2
  import argparse
 
3
 
4
  def main():
5
- parser = argparse.ArgumentParser(description='Estimare capacità e latenza di un modello LLM')
6
- parser.add_argument('--gpu', type=str, default='A100 80GB', help='Tipo di GPU')
7
- parser.add_argument('--model', type=str, default='Llama-3-70B', help='Nome del modello')
8
- parser.add_argument('--prompt_size', type=int, default=4096, help='Dimensione della promessa in token')
9
- parser.add_argument('--response_size', type=int, default=256, help='Dimensione della risposta in token')
10
- parser.add_argument('--concurrent_requests', type=int, default=10, help='Numero di richieste concorrenti')
11
 
12
  args = parser.parse_args()
13
 
14
- gpu_specs = {
15
- 'A100 80GB': {'tflops': 312, 'memory_gb': 80, 'bandwidth': 1935},
16
- 'H100 SXM': {'tflops': 1979, 'memory_gb': 80, 'bandwidth': 3350},
17
- }
18
-
19
- model_specs = {
20
- 'Llama-3-70B': {'params_billion': 70, 'd_model': 8192, 'n_layers': 80},
21
- 'Llama-3-8B': {'params_billion': 8, 'd_model': 4096, 'n_layers': 32},
22
- }
23
-
24
- def estimate_llm_capacity(model_name, gpu_name, prompt_size, response_size, concurrent_requests):
25
- gpu = gpu_specs[gpu_name]
26
- model = model_specs[model_name]
27
-
28
- kv_cache_tokens = (gpu['tflops'] * concurrent_requests) // (model['params_billion'] * 2)
29
- prefill_time_ms = (model['params_billion'] * 2) / (gpu['tflops'] * concurrent_requests) * 1000
30
- generation_time_ms = (model['params_billion'] * 2) / (gpu['bandwidth'] * concurrent_requests) * 1000
31
- estimated_response_time = (prompt_size * prefill_time_ms + response_size * generation_time_ms) / 1000
32
-
33
- return f"""
34
- Modello: {model_name}
35
- GPU: {gpu_name}
36
- KV Cache Tokens: {kv_cache_tokens:.0f}
37
- Prefill Time: {prefill_time_ms:.2f} ms
38
- Generation Time: {generation_time_ms:.2f} ms
39
- Estimated Response Time: {estimated_response_time:.2f} s
40
- """
41
-
42
- with gr.Blocks() as demo:
43
- gr.Markdown("# Estimare Capacità e Latenza LLM")
44
-
45
- gpu_dropdown = gr.Dropdown(choices=['A100 80GB', 'H100 SXM'], label="Tipo di GPU", value='A100 80GB')
46
- model_dropdown = gr.Dropdown(choices=['Llama-3-70B', 'Llama-3-8B'], label="Nome del Modello", value='Llama-3-70B')
47
- prompt_size = gr.Slider(minimum=1, maximum=8192, label="Dimensione della Promessa", value=4096)
48
- response_size = gr.Slider(minimum=1, maximum=8192, label="Dimensione della Risposta", value=256)
49
- concurrent_requests = gr.Slider(minimum=1, maximum=100, label="Richieste Concorrenti", value=10)
50
-
51
- table = gr.Textbox()
52
-
53
- submit_button = gr.Button("Estimare")
54
-
55
- submit_button.click(
56
- fn=lambda gpu=gpu_dropdown.value, model=model_dropdown.value,
57
- prompt_size=prompt_size.value, response_size=response_size.value,
58
- concurrent_requests=concurrent_requests.value:
59
- estimate_llm_capacity(model, gpu, prompt_size, response_size, concurrent_requests),
60
- inputs=[gpu_dropdown, model_dropdown, prompt_size, response_size, concurrent_requests],
61
- outputs=[table]
62
- )
63
-
64
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import argparse
2
+ from tabulate import tabulate
3
 
4
  def main():
5
+ parser = argparse.ArgumentParser(description='Your script description')
6
+ parser.add_argument('-g', '--num_gpu', type=int, default=1, help='Number of GPUs')
7
+ parser.add_argument('-p', '--prompt_sz', type=int, default=4096, help='Prompt size in tokens')
8
+ parser.add_argument('-r', '--response_sz', type=int, default=256, help='Response size in tokens')
9
+ parser.add_argument('-c', '--n_concurrent_req', type=int, default=10, help='Number of concurrent requests')
10
+ parser.add_argument('-w', '-cw', '--ctx_window', type=int, default=1024, help='Average context window')
11
 
12
  args = parser.parse_args()
13
 
14
+ num_gpu = args.num_gpu
15
+ prompt_size = args.prompt_sz
16
+ response_size = args.response_sz
17
+ n_concurrent_request = args.n_concurrent_req
18
+ avg_context_window = args.ctx_window
19
+
20
+ # Print input
21
+ print(f" num_gpu = {num_gpu}, prompt_size = {prompt_size} tokens, response_size = {response_size} tokens")
22
+ print(f" n_concurrent_request = {n_concurrent_request}, avg_context_window = {avg_context_window} tokens")
23
+
24
+ # Define variables
25
+ gpu_specs = [
26
+ {"name": "A10", "fp16_tflops": 125, "memory_gb": 24, "memory_bandwidth_gbps": 600},
27
+ {"name": "A30", "fp16_tflops": 330, "memory_gb": 24, "memory_bandwidth_gbps": 933},
28
+ {"name": "L40", "fp16_tflops": 181, "memory_gb": 48, "memory_bandwidth_gbps": 864},
29
+ {"name": "L40s", "fp16_tflops": 362, "memory_gb": 48, "memory_bandwidth_gbps": 864},
30
+ {"name": "A100 40 GB", "fp16_tflops": 312, "memory_gb": 40, "memory_bandwidth_gbps": 1555},
31
+ {"name": "A100 40 GB SXM", "fp16_tflops": 312, "memory_gb": 40, "memory_bandwidth_gbps": 1555},
32
+ {"name": "A100 80 GB PCIe", "fp16_tflops": 312, "memory_gb": 80, "memory_bandwidth_gbps": 1935},
33
+ {"name": "A100 80 GB SXM", "fp16_tflops": 312, "memory_gb": 80, "memory_bandwidth_gbps": 2039},
34
+ {"name": "H100 PCIe", "fp16_tflops": 1513, "memory_gb": 80, "memory_bandwidth_gbps": 2000},
35
+ {"name": "H100 SXM", "fp16_tflops": 1979, "memory_gb": 80, "memory_bandwidth_gbps": 3350},
36
+ {"name": "H100 NVL", "fp16_tflops": 3958, "memory_gb": 188, "memory_bandwidth_gbps": 7800}
37
+ # Add or comment out GPU types as needed
38
+ ]
39
+
40
+ model_specs = [
41
+ {"name": "Llama-3-8B", "params_billion": 8, "d_model": 4096, "n_heads": 32, "n_layers": 32, "max_context_window": 8192, "d_head": 128},
42
+ {"name": "Llama-3-70B", "params_billion": 70, "d_model": 8192, "n_heads": 64, "n_layers": 80, "max_context_window": 8192, "d_head": 128},
43
+ {"name": "Llama-3.1-8B", "params_billion": 8, "d_model": 4096, "n_heads": 32, "n_layers": 32, "max_context_window": 131072, "d_head": 128},
44
+ {"name": "Llama-3.1-70B", "params_billion": 70, "d_model": 8192, "n_heads": 64, "n_layers": 80, "max_context_window": 131072, "d_head": 128},
45
+ {"name": "Mistral-7B-v0.3", "params_billion": 7, "d_model": 4096, "n_heads": 32, "n_layers": 32, "max_context_window": 32768, "d_head": 128},
46
+ {"name": "Falcon-7B", "params_billion": 7, "d_model": 4544, "n_heads": 71, "n_layers": 32, "max_context_window": 2048, "d_head": 64},
47
+ {"name": "Falcon-40B", "params_billion": 40, "d_model": 8192, "n_heads": 128, "n_layers": 60, "max_context_window": 2048, "d_head": 64},
48
+ {"name": "Falcon-180B", "params_billion": 180, "d_model": 14848, "n_heads": 232, "n_layers": 80, "max_context_window": 2048, "d_head": 64}
49
+ # Add or comment out model specifications as needed
50
+ ]
51
+
52
+ BYTES_IN_GB = 1_073_741_824 # 1 GB = 1,073,741,824 bytes
53
+
54
+ def calc_kv_cache_size_per_token(n_layers, d_model):
55
+ return 2 * 2 * n_layers * d_model / BYTES_IN_GB # GB/token
56
+
57
+ def calc_memory_footprint(model_spec, n_concurrent_request, avg_context_window):
58
+ kv_cache_size_per_token = calc_kv_cache_size_per_token(model_spec["n_layers"], model_spec["d_model"])
59
+ target_gpu_mem = kv_cache_size_per_token * avg_context_window * n_concurrent_request + model_spec["params_billion"] * 2
60
+ return target_gpu_mem
61
+
62
+ print(f"\n******************** Estimate LLM Memory Footprint ********************")
63
+ memory_footprint_table = []
64
+ for model_spec in model_specs:
65
+ kv_cache_size_per_token = calc_kv_cache_size_per_token(model_spec["n_layers"], model_spec["d_model"])
66
+ memory_footprint = calc_memory_footprint(model_spec, n_concurrent_request, avg_context_window)
67
+ memory_footprint_table.append([model_spec['name'], f"{kv_cache_size_per_token:.6f} GiB/token", f"{memory_footprint:.2f} GB"])
68
+ print(tabulate(memory_footprint_table, headers=['Model', 'KV Cache Size per Token', 'Memory Footprint'], tablefmt='orgtbl'))
69
+
70
+ def calc_kv_cache_tokens(num_gpu, gpu_memory_gb, model_params_billion, kv_cache_size):
71
+ result = (num_gpu * gpu_memory_gb - 2 * model_params_billion) / kv_cache_size
72
+ return result if result >= 0 else "OOM"
73
+
74
+ def calc_prefill_time_per_token(num_gpu, model_params_billion, fp16_tflops):
75
+ result = (2 * model_params_billion / num_gpu) / fp16_tflops
76
+ return result if result >= 0 else "OOM"
77
+
78
+ def calc_generation_time_per_token(num_gpu, model_params_billion, memory_bandwidth_gbps):
79
+ result = (2 * model_params_billion / num_gpu) / memory_bandwidth_gbps * 1000
80
+ return result if result >= 0 else "OOM"
81
+
82
+ def calc_estimated_response_time(prefill_time, generation_time, prompt_size, response_size):
83
+ if isinstance(prefill_time, str) or isinstance(generation_time, str): # Check if any are "NA"
84
+ return "OOM"
85
+ return (prompt_size * prefill_time + response_size * generation_time) / 1000 # convert ms to seconds
86
+
87
+ print(f"\n******************** Estimate LLM Capacity and Latency ******************** ")
88
+ capacity_latency_table = []
89
+ for model in model_specs:
90
+ # print(f"Model: {model['name']} ({model['params_billion']}B parameters)")
91
+ kv_cache_size = calc_kv_cache_size_per_token(model['n_layers'], model['d_model'])
92
+ for gpu in gpu_specs:
93
+ kv_cache_tokens = calc_kv_cache_tokens(num_gpu, gpu['memory_gb'], model['params_billion'], kv_cache_size)
94
+ prefill_time_per_token = calc_prefill_time_per_token(num_gpu, model['params_billion'], gpu['fp16_tflops'])
95
+ generation_time_per_token = calc_generation_time_per_token(num_gpu, model['params_billion'], gpu['memory_bandwidth_gbps'])
96
+ estimated_response_time = calc_estimated_response_time(prefill_time_per_token, generation_time_per_token, prompt_size, response_size)
97
+ capacity_latency_table.append([model['name'], gpu['name'], f"{kv_cache_tokens}", f"{prefill_time_per_token:.3f} ms", f"{generation_time_per_token:.3f} ms", f"{estimated_response_time:.1f} s"])
98
+ print(tabulate(capacity_latency_table, headers=['Model', 'GPU', 'KV Cache Tokens', 'Prefill Time', 'Generation Time', 'Estimated Response Time'], tablefmt='orgtbl'))
99
+
100
+ if __name__ == '__main__':
101
+ main()