|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
DDIMScheduler, |
|
DPMSolverMultistepScheduler, |
|
EulerAncestralDiscreteScheduler, |
|
EulerDiscreteScheduler, |
|
LMSDiscreteScheduler, |
|
PNDMScheduler, |
|
StableDiffusionPipeline, |
|
UNet2DConditionModel, |
|
logging, |
|
) |
|
from diffusers.utils import load_numpy, nightly, slow, torch_device |
|
from diffusers.utils.testing_utils import CaptureLogger, require_torch_gpu |
|
|
|
from ...pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS |
|
from ...test_pipelines_common import PipelineTesterMixin |
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = False |
|
|
|
|
|
class StableDiffusion2PipelineFastTests(PipelineTesterMixin, unittest.TestCase): |
|
pipeline_class = StableDiffusionPipeline |
|
params = TEXT_TO_IMAGE_PARAMS |
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS |
|
|
|
def get_dummy_components(self): |
|
torch.manual_seed(0) |
|
unet = UNet2DConditionModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=4, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
cross_attention_dim=32, |
|
|
|
attention_head_dim=(2, 4), |
|
use_linear_projection=True, |
|
) |
|
scheduler = DDIMScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
beta_schedule="scaled_linear", |
|
clip_sample=False, |
|
set_alpha_to_one=False, |
|
) |
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
block_out_channels=[32, 64], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
sample_size=128, |
|
) |
|
torch.manual_seed(0) |
|
text_encoder_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
|
|
hidden_act="gelu", |
|
projection_dim=512, |
|
) |
|
text_encoder = CLIPTextModel(text_encoder_config) |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
components = { |
|
"unet": unet, |
|
"scheduler": scheduler, |
|
"vae": vae, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"safety_checker": None, |
|
"feature_extractor": None, |
|
} |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 6.0, |
|
"output_type": "numpy", |
|
} |
|
return inputs |
|
|
|
def test_stable_diffusion_ddim(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionPipeline(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = sd_pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
expected_slice = np.array([0.5649, 0.6022, 0.4804, 0.5270, 0.5585, 0.4643, 0.5159, 0.4963, 0.4793]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_stable_diffusion_pndm(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
components["scheduler"] = PNDMScheduler(skip_prk_steps=True) |
|
sd_pipe = StableDiffusionPipeline(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = sd_pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
expected_slice = np.array([0.5099, 0.5677, 0.4671, 0.5128, 0.5697, 0.4676, 0.5277, 0.4964, 0.4946]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_stable_diffusion_k_lms(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config) |
|
sd_pipe = StableDiffusionPipeline(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = sd_pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
expected_slice = np.array([0.4717, 0.5376, 0.4568, 0.5225, 0.5734, 0.4797, 0.5467, 0.5074, 0.5043]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_stable_diffusion_k_euler_ancestral(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
components["scheduler"] = EulerAncestralDiscreteScheduler.from_config(components["scheduler"].config) |
|
sd_pipe = StableDiffusionPipeline(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = sd_pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
expected_slice = np.array([0.4715, 0.5376, 0.4569, 0.5224, 0.5734, 0.4797, 0.5465, 0.5074, 0.5046]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_stable_diffusion_k_euler(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
components["scheduler"] = EulerDiscreteScheduler.from_config(components["scheduler"].config) |
|
sd_pipe = StableDiffusionPipeline(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = sd_pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
expected_slice = np.array([0.4717, 0.5376, 0.4568, 0.5225, 0.5734, 0.4797, 0.5467, 0.5074, 0.5043]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_stable_diffusion_long_prompt(self): |
|
components = self.get_dummy_components() |
|
components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config) |
|
sd_pipe = StableDiffusionPipeline(**components) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
do_classifier_free_guidance = True |
|
negative_prompt = None |
|
num_images_per_prompt = 1 |
|
logger = logging.get_logger("diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion") |
|
|
|
prompt = 25 * "@" |
|
with CaptureLogger(logger) as cap_logger_3: |
|
text_embeddings_3 = sd_pipe._encode_prompt( |
|
prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt |
|
) |
|
|
|
prompt = 100 * "@" |
|
with CaptureLogger(logger) as cap_logger: |
|
text_embeddings = sd_pipe._encode_prompt( |
|
prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt |
|
) |
|
|
|
negative_prompt = "Hello" |
|
with CaptureLogger(logger) as cap_logger_2: |
|
text_embeddings_2 = sd_pipe._encode_prompt( |
|
prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt |
|
) |
|
|
|
assert text_embeddings_3.shape == text_embeddings_2.shape == text_embeddings.shape |
|
assert text_embeddings.shape[1] == 77 |
|
|
|
assert cap_logger.out == cap_logger_2.out |
|
|
|
assert cap_logger.out.count("@") == 25 |
|
assert cap_logger_3.out == "" |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class StableDiffusion2PipelineSlowTests(unittest.TestCase): |
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): |
|
generator = torch.Generator(device=generator_device).manual_seed(seed) |
|
latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64)) |
|
latents = torch.from_numpy(latents).to(device=device, dtype=dtype) |
|
inputs = { |
|
"prompt": "a photograph of an astronaut riding a horse", |
|
"latents": latents, |
|
"generator": generator, |
|
"num_inference_steps": 3, |
|
"guidance_scale": 7.5, |
|
"output_type": "numpy", |
|
} |
|
return inputs |
|
|
|
def test_stable_diffusion_default_ddim(self): |
|
pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base") |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1].flatten() |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.49493, 0.47896, 0.40798, 0.54214, 0.53212, 0.48202, 0.47656, 0.46329, 0.48506]) |
|
assert np.abs(image_slice - expected_slice).max() < 1e-4 |
|
|
|
def test_stable_diffusion_pndm(self): |
|
pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base") |
|
pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1].flatten() |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.49493, 0.47896, 0.40798, 0.54214, 0.53212, 0.48202, 0.47656, 0.46329, 0.48506]) |
|
assert np.abs(image_slice - expected_slice).max() < 1e-4 |
|
|
|
def test_stable_diffusion_k_lms(self): |
|
pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base") |
|
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1].flatten() |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.10440, 0.13115, 0.11100, 0.10141, 0.11440, 0.07215, 0.11332, 0.09693, 0.10006]) |
|
assert np.abs(image_slice - expected_slice).max() < 1e-4 |
|
|
|
def test_stable_diffusion_attention_slicing(self): |
|
torch.cuda.reset_peak_memory_stats() |
|
pipe = StableDiffusionPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-2-base", torch_dtype=torch.float16 |
|
) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
|
|
pipe.enable_attention_slicing() |
|
inputs = self.get_inputs(torch_device, dtype=torch.float16) |
|
image_sliced = pipe(**inputs).images |
|
|
|
mem_bytes = torch.cuda.max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
assert mem_bytes < 3.3 * 10**9 |
|
|
|
|
|
pipe.disable_attention_slicing() |
|
inputs = self.get_inputs(torch_device, dtype=torch.float16) |
|
image = pipe(**inputs).images |
|
|
|
|
|
mem_bytes = torch.cuda.max_memory_allocated() |
|
assert mem_bytes > 3.3 * 10**9 |
|
assert np.abs(image_sliced - image).max() < 1e-3 |
|
|
|
def test_stable_diffusion_text2img_intermediate_state(self): |
|
number_of_steps = 0 |
|
|
|
def callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None: |
|
callback_fn.has_been_called = True |
|
nonlocal number_of_steps |
|
number_of_steps += 1 |
|
if step == 1: |
|
latents = latents.detach().cpu().numpy() |
|
assert latents.shape == (1, 4, 64, 64) |
|
latents_slice = latents[0, -3:, -3:, -1] |
|
expected_slice = np.array( |
|
[-0.3862, -0.4507, -1.1729, 0.0686, -1.1045, 0.7124, -1.8301, 0.1903, 1.2773] |
|
) |
|
|
|
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 |
|
elif step == 2: |
|
latents = latents.detach().cpu().numpy() |
|
assert latents.shape == (1, 4, 64, 64) |
|
latents_slice = latents[0, -3:, -3:, -1] |
|
expected_slice = np.array( |
|
[0.2720, -0.1863, -0.7383, -0.5029, -0.7534, 0.3970, -0.7646, 0.4468, 1.2686] |
|
) |
|
|
|
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 |
|
|
|
callback_fn.has_been_called = False |
|
|
|
pipe = StableDiffusionPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-2-base", torch_dtype=torch.float16 |
|
) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs(torch_device, dtype=torch.float16) |
|
pipe(**inputs, callback=callback_fn, callback_steps=1) |
|
assert callback_fn.has_been_called |
|
assert number_of_steps == inputs["num_inference_steps"] |
|
|
|
def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self): |
|
torch.cuda.empty_cache() |
|
torch.cuda.reset_max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
pipe = StableDiffusionPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-2-base", torch_dtype=torch.float16 |
|
) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing(1) |
|
pipe.enable_sequential_cpu_offload() |
|
|
|
inputs = self.get_inputs(torch_device, dtype=torch.float16) |
|
_ = pipe(**inputs) |
|
|
|
mem_bytes = torch.cuda.max_memory_allocated() |
|
|
|
assert mem_bytes < 2.8 * 10**9 |
|
|
|
def test_stable_diffusion_pipeline_with_model_offloading(self): |
|
torch.cuda.empty_cache() |
|
torch.cuda.reset_max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
inputs = self.get_inputs(torch_device, dtype=torch.float16) |
|
|
|
|
|
|
|
pipe = StableDiffusionPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-2-base", |
|
torch_dtype=torch.float16, |
|
) |
|
pipe.unet.set_default_attn_processor() |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
outputs = pipe(**inputs) |
|
mem_bytes = torch.cuda.max_memory_allocated() |
|
|
|
|
|
|
|
|
|
pipe = StableDiffusionPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-2-base", |
|
torch_dtype=torch.float16, |
|
) |
|
pipe.unet.set_default_attn_processor() |
|
|
|
torch.cuda.empty_cache() |
|
torch.cuda.reset_max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
pipe.enable_model_cpu_offload() |
|
pipe.set_progress_bar_config(disable=None) |
|
inputs = self.get_inputs(torch_device, dtype=torch.float16) |
|
outputs_offloaded = pipe(**inputs) |
|
mem_bytes_offloaded = torch.cuda.max_memory_allocated() |
|
|
|
assert np.abs(outputs.images - outputs_offloaded.images).max() < 1e-3 |
|
assert mem_bytes_offloaded < mem_bytes |
|
assert mem_bytes_offloaded < 3 * 10**9 |
|
for module in pipe.text_encoder, pipe.unet, pipe.vae: |
|
assert module.device == torch.device("cpu") |
|
|
|
|
|
torch.cuda.empty_cache() |
|
torch.cuda.reset_max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
pipe.enable_attention_slicing() |
|
_ = pipe(**inputs) |
|
mem_bytes_slicing = torch.cuda.max_memory_allocated() |
|
assert mem_bytes_slicing < mem_bytes_offloaded |
|
|
|
|
|
@nightly |
|
@require_torch_gpu |
|
class StableDiffusion2PipelineNightlyTests(unittest.TestCase): |
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): |
|
generator = torch.Generator(device=generator_device).manual_seed(seed) |
|
latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64)) |
|
latents = torch.from_numpy(latents).to(device=device, dtype=dtype) |
|
inputs = { |
|
"prompt": "a photograph of an astronaut riding a horse", |
|
"latents": latents, |
|
"generator": generator, |
|
"num_inference_steps": 50, |
|
"guidance_scale": 7.5, |
|
"output_type": "numpy", |
|
} |
|
return inputs |
|
|
|
def test_stable_diffusion_2_0_default_ddim(self): |
|
sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base").to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = sd_pipe(**inputs).images[0] |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co./datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_2_text2img/stable_diffusion_2_0_base_ddim.npy" |
|
) |
|
max_diff = np.abs(expected_image - image).max() |
|
assert max_diff < 1e-3 |
|
|
|
def test_stable_diffusion_2_1_default_pndm(self): |
|
sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base").to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = sd_pipe(**inputs).images[0] |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co./datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_2_text2img/stable_diffusion_2_1_base_pndm.npy" |
|
) |
|
max_diff = np.abs(expected_image - image).max() |
|
assert max_diff < 1e-3 |
|
|
|
def test_stable_diffusion_ddim(self): |
|
sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base").to(torch_device) |
|
sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = sd_pipe(**inputs).images[0] |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co./datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_2_text2img/stable_diffusion_2_1_base_ddim.npy" |
|
) |
|
max_diff = np.abs(expected_image - image).max() |
|
assert max_diff < 1e-3 |
|
|
|
def test_stable_diffusion_lms(self): |
|
sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base").to(torch_device) |
|
sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = sd_pipe(**inputs).images[0] |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co./datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_2_text2img/stable_diffusion_2_1_base_lms.npy" |
|
) |
|
max_diff = np.abs(expected_image - image).max() |
|
assert max_diff < 1e-3 |
|
|
|
def test_stable_diffusion_euler(self): |
|
sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base").to(torch_device) |
|
sd_pipe.scheduler = EulerDiscreteScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = sd_pipe(**inputs).images[0] |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co./datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_2_text2img/stable_diffusion_2_1_base_euler.npy" |
|
) |
|
max_diff = np.abs(expected_image - image).max() |
|
assert max_diff < 1e-3 |
|
|
|
def test_stable_diffusion_dpm(self): |
|
sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base").to(torch_device) |
|
sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
inputs["num_inference_steps"] = 25 |
|
image = sd_pipe(**inputs).images[0] |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co./datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_2_text2img/stable_diffusion_2_1_base_dpm_multi.npy" |
|
) |
|
max_diff = np.abs(expected_image - image).max() |
|
assert max_diff < 1e-3 |
|
|