|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import random |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from PIL import Image |
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
DPMSolverMultistepScheduler, |
|
LMSDiscreteScheduler, |
|
PNDMScheduler, |
|
StableDiffusionInpaintPipeline, |
|
UNet2DConditionModel, |
|
) |
|
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint import prepare_mask_and_masked_image |
|
from diffusers.utils import floats_tensor, load_image, load_numpy, nightly, slow, torch_device |
|
from diffusers.utils.testing_utils import require_torch_gpu |
|
|
|
from ...pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS |
|
from ...test_pipelines_common import PipelineTesterMixin |
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = False |
|
|
|
|
|
class StableDiffusionInpaintPipelineFastTests(PipelineTesterMixin, unittest.TestCase): |
|
pipeline_class = StableDiffusionInpaintPipeline |
|
params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS |
|
batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS |
|
|
|
def get_dummy_components(self): |
|
torch.manual_seed(0) |
|
unet = UNet2DConditionModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=9, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
cross_attention_dim=32, |
|
) |
|
scheduler = PNDMScheduler(skip_prk_steps=True) |
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
block_out_channels=[32, 64], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
) |
|
torch.manual_seed(0) |
|
text_encoder_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
) |
|
text_encoder = CLIPTextModel(text_encoder_config) |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
components = { |
|
"unet": unet, |
|
"scheduler": scheduler, |
|
"vae": vae, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"safety_checker": None, |
|
"feature_extractor": None, |
|
} |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
|
|
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) |
|
image = image.cpu().permute(0, 2, 3, 1)[0] |
|
init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64)) |
|
mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((64, 64)) |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"image": init_image, |
|
"mask_image": mask_image, |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 6.0, |
|
"output_type": "numpy", |
|
} |
|
return inputs |
|
|
|
def test_stable_diffusion_inpaint(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionInpaintPipeline(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = sd_pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
expected_slice = np.array([0.4723, 0.5731, 0.3939, 0.5441, 0.5922, 0.4392, 0.5059, 0.4651, 0.4474]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_stable_diffusion_inpaint_image_tensor(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionInpaintPipeline(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
output = sd_pipe(**inputs) |
|
out_pil = output.images |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
inputs["image"] = torch.tensor(np.array(inputs["image"]) / 127.5 - 1).permute(2, 0, 1).unsqueeze(0) |
|
inputs["mask_image"] = torch.tensor(np.array(inputs["mask_image"]) / 255).permute(2, 0, 1)[:1].unsqueeze(0) |
|
output = sd_pipe(**inputs) |
|
out_tensor = output.images |
|
|
|
assert out_pil.shape == (1, 64, 64, 3) |
|
assert np.abs(out_pil.flatten() - out_tensor.flatten()).max() < 5e-2 |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class StableDiffusionInpaintPipelineSlowTests(unittest.TestCase): |
|
def setUp(self): |
|
super().setUp() |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): |
|
generator = torch.Generator(device=generator_device).manual_seed(seed) |
|
init_image = load_image( |
|
"https://huggingface.co./datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_inpaint/input_bench_image.png" |
|
) |
|
mask_image = load_image( |
|
"https://huggingface.co./datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_inpaint/input_bench_mask.png" |
|
) |
|
inputs = { |
|
"prompt": "Face of a yellow cat, high resolution, sitting on a park bench", |
|
"image": init_image, |
|
"mask_image": mask_image, |
|
"generator": generator, |
|
"num_inference_steps": 3, |
|
"guidance_scale": 7.5, |
|
"output_type": "numpy", |
|
} |
|
return inputs |
|
|
|
def test_stable_diffusion_inpaint_ddim(self): |
|
pipe = StableDiffusionInpaintPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-inpainting", safety_checker=None |
|
) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = pipe(**inputs).images |
|
image_slice = image[0, 253:256, 253:256, -1].flatten() |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.0427, 0.0460, 0.0483, 0.0460, 0.0584, 0.0521, 0.1549, 0.1695, 0.1794]) |
|
|
|
assert np.abs(expected_slice - image_slice).max() < 1e-4 |
|
|
|
def test_stable_diffusion_inpaint_fp16(self): |
|
pipe = StableDiffusionInpaintPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, safety_checker=None |
|
) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs(torch_device, dtype=torch.float16) |
|
image = pipe(**inputs).images |
|
image_slice = image[0, 253:256, 253:256, -1].flatten() |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.1350, 0.1123, 0.1350, 0.1641, 0.1328, 0.1230, 0.1289, 0.1531, 0.1687]) |
|
|
|
assert np.abs(expected_slice - image_slice).max() < 5e-2 |
|
|
|
def test_stable_diffusion_inpaint_pndm(self): |
|
pipe = StableDiffusionInpaintPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-inpainting", safety_checker=None |
|
) |
|
pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = pipe(**inputs).images |
|
image_slice = image[0, 253:256, 253:256, -1].flatten() |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.0425, 0.0273, 0.0344, 0.1694, 0.1727, 0.1812, 0.3256, 0.3311, 0.3272]) |
|
|
|
assert np.abs(expected_slice - image_slice).max() < 1e-4 |
|
|
|
def test_stable_diffusion_inpaint_k_lms(self): |
|
pipe = StableDiffusionInpaintPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-inpainting", safety_checker=None |
|
) |
|
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = pipe(**inputs).images |
|
image_slice = image[0, 253:256, 253:256, -1].flatten() |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.9314, 0.7575, 0.9432, 0.8885, 0.9028, 0.7298, 0.9811, 0.9667, 0.7633]) |
|
|
|
assert np.abs(expected_slice - image_slice).max() < 1e-4 |
|
|
|
def test_stable_diffusion_inpaint_with_sequential_cpu_offloading(self): |
|
torch.cuda.empty_cache() |
|
torch.cuda.reset_max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
pipe = StableDiffusionInpaintPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-inpainting", safety_checker=None, torch_dtype=torch.float16 |
|
) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing(1) |
|
pipe.enable_sequential_cpu_offload() |
|
|
|
inputs = self.get_inputs(torch_device, dtype=torch.float16) |
|
_ = pipe(**inputs) |
|
|
|
mem_bytes = torch.cuda.max_memory_allocated() |
|
|
|
assert mem_bytes < 2.2 * 10**9 |
|
|
|
|
|
@nightly |
|
@require_torch_gpu |
|
class StableDiffusionInpaintPipelineNightlyTests(unittest.TestCase): |
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): |
|
generator = torch.Generator(device=generator_device).manual_seed(seed) |
|
init_image = load_image( |
|
"https://huggingface.co./datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_inpaint/input_bench_image.png" |
|
) |
|
mask_image = load_image( |
|
"https://huggingface.co./datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_inpaint/input_bench_mask.png" |
|
) |
|
inputs = { |
|
"prompt": "Face of a yellow cat, high resolution, sitting on a park bench", |
|
"image": init_image, |
|
"mask_image": mask_image, |
|
"generator": generator, |
|
"num_inference_steps": 50, |
|
"guidance_scale": 7.5, |
|
"output_type": "numpy", |
|
} |
|
return inputs |
|
|
|
def test_inpaint_ddim(self): |
|
sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting") |
|
sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = sd_pipe(**inputs).images[0] |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co./datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_inpaint/stable_diffusion_inpaint_ddim.npy" |
|
) |
|
max_diff = np.abs(expected_image - image).max() |
|
assert max_diff < 1e-3 |
|
|
|
def test_inpaint_pndm(self): |
|
sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting") |
|
sd_pipe.scheduler = PNDMScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = sd_pipe(**inputs).images[0] |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co./datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_inpaint/stable_diffusion_inpaint_pndm.npy" |
|
) |
|
max_diff = np.abs(expected_image - image).max() |
|
assert max_diff < 1e-3 |
|
|
|
def test_inpaint_lms(self): |
|
sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting") |
|
sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = sd_pipe(**inputs).images[0] |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co./datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_inpaint/stable_diffusion_inpaint_lms.npy" |
|
) |
|
max_diff = np.abs(expected_image - image).max() |
|
assert max_diff < 1e-3 |
|
|
|
def test_inpaint_dpm(self): |
|
sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting") |
|
sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
inputs["num_inference_steps"] = 30 |
|
image = sd_pipe(**inputs).images[0] |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co./datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_inpaint/stable_diffusion_inpaint_dpm_multi.npy" |
|
) |
|
max_diff = np.abs(expected_image - image).max() |
|
assert max_diff < 1e-3 |
|
|
|
|
|
class StableDiffusionInpaintingPrepareMaskAndMaskedImageTests(unittest.TestCase): |
|
def test_pil_inputs(self): |
|
im = np.random.randint(0, 255, (32, 32, 3), dtype=np.uint8) |
|
im = Image.fromarray(im) |
|
mask = np.random.randint(0, 255, (32, 32), dtype=np.uint8) > 127.5 |
|
mask = Image.fromarray((mask * 255).astype(np.uint8)) |
|
|
|
t_mask, t_masked = prepare_mask_and_masked_image(im, mask) |
|
|
|
self.assertTrue(isinstance(t_mask, torch.Tensor)) |
|
self.assertTrue(isinstance(t_masked, torch.Tensor)) |
|
|
|
self.assertEqual(t_mask.ndim, 4) |
|
self.assertEqual(t_masked.ndim, 4) |
|
|
|
self.assertEqual(t_mask.shape, (1, 1, 32, 32)) |
|
self.assertEqual(t_masked.shape, (1, 3, 32, 32)) |
|
|
|
self.assertTrue(t_mask.dtype == torch.float32) |
|
self.assertTrue(t_masked.dtype == torch.float32) |
|
|
|
self.assertTrue(t_mask.min() >= 0.0) |
|
self.assertTrue(t_mask.max() <= 1.0) |
|
self.assertTrue(t_masked.min() >= -1.0) |
|
self.assertTrue(t_masked.min() <= 1.0) |
|
|
|
self.assertTrue(t_mask.sum() > 0.0) |
|
|
|
def test_np_inputs(self): |
|
im_np = np.random.randint(0, 255, (32, 32, 3), dtype=np.uint8) |
|
im_pil = Image.fromarray(im_np) |
|
mask_np = np.random.randint(0, 255, (32, 32), dtype=np.uint8) > 127.5 |
|
mask_pil = Image.fromarray((mask_np * 255).astype(np.uint8)) |
|
|
|
t_mask_np, t_masked_np = prepare_mask_and_masked_image(im_np, mask_np) |
|
t_mask_pil, t_masked_pil = prepare_mask_and_masked_image(im_pil, mask_pil) |
|
|
|
self.assertTrue((t_mask_np == t_mask_pil).all()) |
|
self.assertTrue((t_masked_np == t_masked_pil).all()) |
|
|
|
def test_torch_3D_2D_inputs(self): |
|
im_tensor = torch.randint(0, 255, (3, 32, 32), dtype=torch.uint8) |
|
mask_tensor = torch.randint(0, 255, (32, 32), dtype=torch.uint8) > 127.5 |
|
im_np = im_tensor.numpy().transpose(1, 2, 0) |
|
mask_np = mask_tensor.numpy() |
|
|
|
t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor) |
|
t_mask_np, t_masked_np = prepare_mask_and_masked_image(im_np, mask_np) |
|
|
|
self.assertTrue((t_mask_tensor == t_mask_np).all()) |
|
self.assertTrue((t_masked_tensor == t_masked_np).all()) |
|
|
|
def test_torch_3D_3D_inputs(self): |
|
im_tensor = torch.randint(0, 255, (3, 32, 32), dtype=torch.uint8) |
|
mask_tensor = torch.randint(0, 255, (1, 32, 32), dtype=torch.uint8) > 127.5 |
|
im_np = im_tensor.numpy().transpose(1, 2, 0) |
|
mask_np = mask_tensor.numpy()[0] |
|
|
|
t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor) |
|
t_mask_np, t_masked_np = prepare_mask_and_masked_image(im_np, mask_np) |
|
|
|
self.assertTrue((t_mask_tensor == t_mask_np).all()) |
|
self.assertTrue((t_masked_tensor == t_masked_np).all()) |
|
|
|
def test_torch_4D_2D_inputs(self): |
|
im_tensor = torch.randint(0, 255, (1, 3, 32, 32), dtype=torch.uint8) |
|
mask_tensor = torch.randint(0, 255, (32, 32), dtype=torch.uint8) > 127.5 |
|
im_np = im_tensor.numpy()[0].transpose(1, 2, 0) |
|
mask_np = mask_tensor.numpy() |
|
|
|
t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor) |
|
t_mask_np, t_masked_np = prepare_mask_and_masked_image(im_np, mask_np) |
|
|
|
self.assertTrue((t_mask_tensor == t_mask_np).all()) |
|
self.assertTrue((t_masked_tensor == t_masked_np).all()) |
|
|
|
def test_torch_4D_3D_inputs(self): |
|
im_tensor = torch.randint(0, 255, (1, 3, 32, 32), dtype=torch.uint8) |
|
mask_tensor = torch.randint(0, 255, (1, 32, 32), dtype=torch.uint8) > 127.5 |
|
im_np = im_tensor.numpy()[0].transpose(1, 2, 0) |
|
mask_np = mask_tensor.numpy()[0] |
|
|
|
t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor) |
|
t_mask_np, t_masked_np = prepare_mask_and_masked_image(im_np, mask_np) |
|
|
|
self.assertTrue((t_mask_tensor == t_mask_np).all()) |
|
self.assertTrue((t_masked_tensor == t_masked_np).all()) |
|
|
|
def test_torch_4D_4D_inputs(self): |
|
im_tensor = torch.randint(0, 255, (1, 3, 32, 32), dtype=torch.uint8) |
|
mask_tensor = torch.randint(0, 255, (1, 1, 32, 32), dtype=torch.uint8) > 127.5 |
|
im_np = im_tensor.numpy()[0].transpose(1, 2, 0) |
|
mask_np = mask_tensor.numpy()[0][0] |
|
|
|
t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor) |
|
t_mask_np, t_masked_np = prepare_mask_and_masked_image(im_np, mask_np) |
|
|
|
self.assertTrue((t_mask_tensor == t_mask_np).all()) |
|
self.assertTrue((t_masked_tensor == t_masked_np).all()) |
|
|
|
def test_torch_batch_4D_3D(self): |
|
im_tensor = torch.randint(0, 255, (2, 3, 32, 32), dtype=torch.uint8) |
|
mask_tensor = torch.randint(0, 255, (2, 32, 32), dtype=torch.uint8) > 127.5 |
|
|
|
im_nps = [im.numpy().transpose(1, 2, 0) for im in im_tensor] |
|
mask_nps = [mask.numpy() for mask in mask_tensor] |
|
|
|
t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor) |
|
nps = [prepare_mask_and_masked_image(i, m) for i, m in zip(im_nps, mask_nps)] |
|
t_mask_np = torch.cat([n[0] for n in nps]) |
|
t_masked_np = torch.cat([n[1] for n in nps]) |
|
|
|
self.assertTrue((t_mask_tensor == t_mask_np).all()) |
|
self.assertTrue((t_masked_tensor == t_masked_np).all()) |
|
|
|
def test_torch_batch_4D_4D(self): |
|
im_tensor = torch.randint(0, 255, (2, 3, 32, 32), dtype=torch.uint8) |
|
mask_tensor = torch.randint(0, 255, (2, 1, 32, 32), dtype=torch.uint8) > 127.5 |
|
|
|
im_nps = [im.numpy().transpose(1, 2, 0) for im in im_tensor] |
|
mask_nps = [mask.numpy()[0] for mask in mask_tensor] |
|
|
|
t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor) |
|
nps = [prepare_mask_and_masked_image(i, m) for i, m in zip(im_nps, mask_nps)] |
|
t_mask_np = torch.cat([n[0] for n in nps]) |
|
t_masked_np = torch.cat([n[1] for n in nps]) |
|
|
|
self.assertTrue((t_mask_tensor == t_mask_np).all()) |
|
self.assertTrue((t_masked_tensor == t_masked_np).all()) |
|
|
|
def test_shape_mismatch(self): |
|
|
|
with self.assertRaises(AssertionError): |
|
prepare_mask_and_masked_image(torch.randn(3, 32, 32), torch.randn(64, 64)) |
|
|
|
with self.assertRaises(AssertionError): |
|
prepare_mask_and_masked_image(torch.randn(2, 3, 32, 32), torch.randn(4, 64, 64)) |
|
|
|
with self.assertRaises(AssertionError): |
|
prepare_mask_and_masked_image(torch.randn(2, 3, 32, 32), torch.randn(4, 1, 64, 64)) |
|
|
|
def test_type_mismatch(self): |
|
|
|
with self.assertRaises(TypeError): |
|
prepare_mask_and_masked_image(torch.rand(3, 32, 32), torch.rand(3, 32, 32).numpy()) |
|
|
|
with self.assertRaises(TypeError): |
|
prepare_mask_and_masked_image(torch.rand(3, 32, 32).numpy(), torch.rand(3, 32, 32)) |
|
|
|
def test_channels_first(self): |
|
|
|
with self.assertRaises(AssertionError): |
|
prepare_mask_and_masked_image(torch.rand(32, 32, 3), torch.rand(3, 32, 32)) |
|
|
|
def test_tensor_range(self): |
|
|
|
with self.assertRaises(ValueError): |
|
prepare_mask_and_masked_image(torch.ones(3, 32, 32) * 2, torch.rand(32, 32)) |
|
|
|
with self.assertRaises(ValueError): |
|
prepare_mask_and_masked_image(torch.ones(3, 32, 32) * (-2), torch.rand(32, 32)) |
|
|
|
with self.assertRaises(ValueError): |
|
prepare_mask_and_masked_image(torch.rand(3, 32, 32), torch.ones(32, 32) * 2) |
|
|
|
with self.assertRaises(ValueError): |
|
prepare_mask_and_masked_image(torch.rand(3, 32, 32), torch.ones(32, 32) * -1) |
|
|