import whisper from pytube import YouTube from transformers import pipeline import gradio as gr import os import re model = whisper.load_model("base") summarizer = pipeline("summarization") def get_audio(url): yt = YouTube(url) video = yt.streams.filter(only_audio=True).first() out_file=video.download(output_path=".") base, ext = os.path.splitext(out_file) new_file = base+'.mp3' os.rename(out_file, new_file) a = new_file return a def get_text(url): result = model.transcribe(get_audio(url)) return result['text'] def get_summary(article): first_sentences = ' '.join(re.split(r'(?<=[.:;])\s', article)[:5]) first_sentences = first_sentences.replace(' .', '.') print(first_sentences) b = summarizer(first_sentences, min_length = 20, max_length = 120, do_sample = False) b = b[0]['summary_text'] return b with gr.Blocks() as demo: gr.Markdown("