#!/usr/bin/env python3 """ app.py – Quranic Data Training Pipeline Endpoint for ZeroGPU Spaces -------------------------------------------------------------------- This script integrates a full Quranic data processing and training pipeline into a Gradio interface endpoint. It is optimized for CPU/GPU-based training on Hugging Face ZeroGPU (using the Gradio SDK) and uses chunked incremental training, memory management, and gradient checkpointing to efficiently update Google's Gemma-2-2b model with Quranic data. Requirements: - Transformers (==4.45.0) - Gradio (>=5.12.0) - PyTorch (==2.3.0) - psutil (==5.9.5) - Accelerate (>=0.26.0) - Hugging Face PRO subscription with ZeroGPU enabled (ensure your HF token is set as an environment variable HF_TOKEN) - Ubuntu CPU/Linux with access to ZeroGPU hardware via Spaces - Input data files placed in the project root. - Sufficient storage in "working_directory" Author: [M-Saddam Hussain] Date: March 2025 Data References: [Tanzil.net, IslamSource, QuranicCorpus] """ import json import logging import os import traceback import gc import time import psutil import math import shutil from datetime import datetime from typing import Dict, List, Optional from dataclasses import dataclass, asdict import torch # Limit PyTorch threads for CPU stability. torch.set_num_threads(8) from torch.utils.data import Dataset from transformers import ( AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer, DataCollatorForLanguageModeling, __version__ as transformers_version ) from threading import Lock import gradio as gr import spaces # Check for minimum required Transformers version for custom model support MIN_TRANSFORMERS_VERSION = "4.42.0" if tuple(map(int, transformers_version.split("."))) < tuple(map(int, MIN_TRANSFORMERS_VERSION.split("."))): logging.warning(f"Transformers version {transformers_version} detected. Please upgrade to at least {MIN_TRANSFORMERS_VERSION} for proper support of the 'gemma2' architecture.") # Configure logging logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s', handlers=[ logging.FileHandler('pipeline.log'), logging.StreamHandler() ] ) logger = logging.getLogger(__name__) def manage_memory(threshold_percent: int = 90, min_available_mb: int = 500, sleep_duration: int = 10): """ Check memory usage; if usage is high or available memory is low, force garbage collection and sleep briefly. """ vm = psutil.virtual_memory() used_percent = vm.percent available_mb = vm.available / (1024 * 1024) logger.info(f"Memory usage: {used_percent}% used, {available_mb:.2f} MB available") if used_percent > threshold_percent or available_mb < min_available_mb: logger.warning("High memory usage detected, forcing garbage collection and sleeping...") gc.collect() time.sleep(sleep_duration) def manage_gpu_resources(sleep_duration: int = 5): """ Checks GPU memory and empties cache if necessary. """ if torch.cuda.is_available(): allocated = torch.cuda.memory_allocated() / (1024 * 1024) cached = torch.cuda.memory_reserved() / (1024 * 1024) logger.info(f"GPU Memory Allocated: {allocated:.2f} MB, Reserved: {cached:.2f} MB") torch.cuda.empty_cache() time.sleep(sleep_duration) def zip_checkpoint(checkpoint_dir: str) -> str: """ Zips the checkpoint directory and returns the path to the zip file. """ zip_file = checkpoint_dir + ".zip" if os.path.exists(zip_file): os.remove(zip_file) shutil.make_archive(checkpoint_dir, 'zip', checkpoint_dir) return os.path.basename(zip_file) @dataclass class WordAnalysis: """Structured representation of word-level analysis""" arabic: str translation: str position: str morphology: Dict features: List[str] root: str location: str metadata: Dict @dataclass class VerseData: """Structured representation of verse-level data""" chapter: int verse: int arabic_text: str translation: str words: List[WordAnalysis] metadata: Dict class QuranicDataset(Dataset): """Custom dataset for Quranic text training.""" def __init__(self, processed_data: List[Dict], tokenizer): self.examples = [] self.tokenizer = tokenizer for verse_data in processed_data: self.examples.extend(self._create_training_examples(verse_data)) def _create_training_examples(self, verse_data: Dict) -> List[Dict]: examples = [] text_block = ( f"[VERSE {verse_data['chapter']}:{verse_data['verse']}]\n" f"Arabic: {verse_data['arabic_text']}\n" f"Translation: {verse_data['translation']}\n" "Morphological Analysis:\n" ) for word in verse_data['words']: text_block += ( f"[WORD] {word['arabic']}\n" f"Root: {word['root']}\n" f"Features: {', '.join(word['features'])}\n" ) examples.append(self._format_example(text_block)) return examples def _format_example(self, text: str) -> Dict: encodings = self.tokenizer( text, truncation=True, max_length=64, padding="max_length", return_tensors="pt" ) # Explicitly move tensors to CPU return { "input_ids": encodings["input_ids"][0].cpu(), "attention_mask": encodings["attention_mask"][0].cpu() } def __len__(self): return len(self.examples) def __getitem__(self, idx): return self.examples[idx] class QuranicDataProcessor: """Processes Quranic data into structured training examples.""" def __init__(self, source_dir: str, output_dir: str): self.source_dir = source_dir self.output_dir = output_dir self.morphological_data: Dict[str, Dict] = {} self.word_by_word_data: Dict[str, List[str]] = {} self.translation_data: Dict[str, str] = {} self.processing_lock = Lock() os.makedirs(output_dir, exist_ok=True) os.makedirs(os.path.join(output_dir, 'json'), exist_ok=True) os.makedirs(os.path.join(output_dir, 'txt'), exist_ok=True) os.makedirs(os.path.join(output_dir, 'checkpoints'), exist_ok=True) logger.info(f"Initialized processor with source dir: {source_dir}") def load_source_files(self) -> bool: """Loads morphological, translation, and word-by-word data from project root.""" try: logger.info("Loading morphological data...") morph_path = os.path.join(self.source_dir, 'quranic-corpus-morphology-0.4.txt') with open(morph_path, 'r', encoding='utf-8') as f: next(f) for line in f: if line.strip() and not line.startswith('#'): parts = line.strip().split('\t') if len(parts) >= 4: location = parts[0].strip('()') self.morphological_data[location] = { 'form': parts[1], 'tag': parts[2], 'features': parts[3] } logger.info(f"Loaded {len(self.morphological_data)} morphological entries") logger.info("Loading translation data...") trans_path = os.path.join(self.source_dir, 'en.sample.quran-maududi.txt') with open(trans_path, 'r', encoding='utf-8') as f: next(f) for line in f: if line.strip(): parts = line.strip().split('|') if len(parts) >= 3: key = f"{parts[0]}:{parts[1]}" self.translation_data[key] = parts[2].strip() logger.info(f"Loaded {len(self.translation_data)} verse translations") logger.info("Loading word-by-word data...") word_path = os.path.join(self.source_dir, 'en.w4w.qurandev.txt') with open(word_path, 'r', encoding='utf-8-sig') as f: lines = [line.strip() for line in f if line.strip()] sorted_keys = sorted(self.translation_data.keys(), key=lambda x: (int(x.split(':')[0]), int(x.split(':')[1]))) if len(lines) != len(sorted_keys): logger.warning("Mismatch between word-by-word file and translation data") for i, verse_key in enumerate(sorted_keys): if i < len(lines): words = [w.strip() for w in lines[i].split('|') if w.strip()] self.word_by_word_data[verse_key] = words logger.info(f"Loaded word-by-word data for {len(self.word_by_word_data)} verses") return True except Exception as e: logger.error(f"Error loading source files: {str(e)}") logger.error(traceback.format_exc()) return False def process_verse(self, chapter: int, verse: int) -> Optional[VerseData]: """Processes a single verse into structured format.""" try: verse_ref = f"{chapter}:{verse}" logger.info(f"Processing verse {verse_ref}") translation = self.translation_data.get(verse_ref) if not translation: logger.warning(f"No translation for verse {verse_ref}") return None verse_word_list = self.word_by_word_data.get(verse_ref, []) if not verse_word_list: logger.warning(f"No word-by-word data for verse {verse_ref}") return None verse_words: List[WordAnalysis] = [] arabic_text = "" for pos in range(1, len(verse_word_list) + 1): pattern = f"{chapter}:{verse}:{pos}:" matching_entries = [data for loc, data in self.morphological_data.items() if loc.startswith(pattern)] if not matching_entries: logger.debug(f"No morphological data for {pattern}") continue combined_form = " ".join(entry['form'] for entry in matching_entries) combined_features = [] root = "" for entry in matching_entries: features = entry['features'].split('|') combined_features.extend(features) if not root: for f in features: if 'ROOT:' in f: root = f.split('ROOT:')[1] break word_translation = verse_word_list[pos - 1] word = WordAnalysis( arabic=combined_form, translation=word_translation, position=str(pos), morphology=matching_entries[0], features=combined_features, root=root, location=f"{chapter}:{verse}:{pos}", metadata={} ) verse_words.append(word) arabic_text += f" {combined_form}" verse_data = VerseData( chapter=chapter, verse=verse, arabic_text=arabic_text.strip(), translation=translation, words=verse_words, metadata={ "processed_timestamp": datetime.now().isoformat(), "word_count": len(verse_words) } ) self._save_verse_data(verse_data) return verse_data except Exception as e: logger.error(f"Error processing verse {chapter}:{verse}: {str(e)}") logger.error(traceback.format_exc()) return None def _save_verse_data(self, verse_data: VerseData): """Saves processed verse data as JSON and TXT.""" try: verse_ref = f"{verse_data.chapter}:{verse_data.verse}" json_path = os.path.join(self.output_dir, 'json', f'verse_{verse_ref.replace(":", "_")}.json') with open(json_path, 'w', encoding='utf-8') as f: json.dump(asdict(verse_data), f, ensure_ascii=False, indent=2) txt_path = os.path.join(self.output_dir, 'txt', f'verse_{verse_ref.replace(":", "_")}.txt') with open(txt_path, 'w', encoding='utf-8') as f: f.write(f"=== Verse {verse_ref} ===\n\n") f.write(f"Arabic Text:\n{verse_data.arabic_text}\n\n") f.write(f"Translation:\n{verse_data.translation}\n\n") f.write("Word Analysis:\n") for i, word in enumerate(verse_data.words, 1): f.write(f"\nWord {i}:\n") f.write(f" Arabic: {word.arabic}\n") f.write(f" Translation: {word.translation}\n") f.write(f" Root: {word.root}\n") f.write(" Features:\n") for feature in word.features: f.write(f" - {feature}\n") f.write("\n") logger.info(f"Saved verse data to {json_path} and {txt_path}") except Exception as e: logger.error(f"Error saving verse data: {str(e)}") logger.error(traceback.format_exc()) class QuranicModelTrainer: """Trains the Gemma-2-2b model on Quranic data using chunked incremental updates.""" def __init__(self, model_name: str = "google/gemma-2-2b", processed_data_dir: str = "processed_data", checkpoint_dir: str = "checkpoints"): self.processed_data_dir = processed_data_dir self.checkpoint_dir = checkpoint_dir # Force CPU mode initially regardless of GPU availability. self.device = "cpu" logger.info("Forcing training on CPU initially.") logger.info("Loading tokenizer and model...") self.tokenizer = AutoTokenizer.from_pretrained( model_name, token=os.environ.get("HF_TOKEN"), additional_special_tokens=["[VERSE]", "[WORD]", "[ROOT]", "[FEATURES]"], trust_remote_code=True ) if self.tokenizer.pad_token is None: self.tokenizer.add_special_tokens({"pad_token": "[PAD]"}) try: self.model = AutoModelForCausalLM.from_pretrained( model_name, token=os.environ.get("HF_TOKEN"), torch_dtype=torch.float32, low_cpu_mem_usage=True, trust_remote_code=True, attn_implementation="eager" ) except Exception as e: logger.error(f"Error loading model directly: {str(e)}") logger.info("Attempting to load with fallback parameters...") from transformers import AutoConfig config = AutoConfig.from_pretrained( model_name, token=os.environ.get("HF_TOKEN"), trust_remote_code=True ) self.model = AutoModelForCausalLM.from_pretrained( model_name, token=os.environ.get("HF_TOKEN"), config=config, torch_dtype=torch.float32, low_cpu_mem_usage=True, trust_remote_code=True, revision="main", attn_implementation="eager" ) self.model.resize_token_embeddings(len(self.tokenizer)) self.model.train() self.model.config.use_cache = False if hasattr(self.model, "gradient_checkpointing_enable"): self.model.gradient_checkpointing_enable() else: logger.warning("Gradient checkpointing not available for this model") # Use Accelerate for device management; force CPU initially. from accelerate import Accelerator self.accelerator = Accelerator(cpu=True) self.model = self.accelerator.prepare(self.model) def prepare_training_data(self, chapter_data: List[Dict]) -> Dataset: """Creates a QuranicDataset from processed chapter data.""" return QuranicDataset(chapter_data, self.tokenizer) def train_chunk(self, training_args: TrainingArguments, dataset: Dataset, chunk_output_dir: str) -> bool: """ Trains a single chunk. Returns True if successful. """ try: data_collator = DataCollatorForLanguageModeling( tokenizer=self.tokenizer, mlm=False ) trainer = Trainer( model=self.model, args=training_args, train_dataset=dataset, processing_class=self.tokenizer, # Updated per deprecation notice. data_collator=data_collator ) logger.info(f"Starting training on chunk at {chunk_output_dir} with device {self.device}") trainer.train() trainer.save_model(chunk_output_dir) zip_filename = zip_checkpoint(chunk_output_dir) base_url = os.environ.get("HF_SPACE_URL", "http://localhost") download_link = f"{base_url}/file/{zip_filename}" logger.info(f"Checkpoint download link: {download_link}") with open(os.path.join(chunk_output_dir, "download_link.txt"), "w") as f: f.write(download_link) del trainer gc.collect() manage_memory() manage_gpu_resources() return True except Exception as e: logger.error(f"Error in training chunk at {chunk_output_dir}: {str(e)}") logger.error(traceback.format_exc()) return False def poll_for_gpu(self, poll_interval: int = 10, max_attempts: int = 30) -> bool: """ Polls periodically to check if GPU is available. Returns True if GPU becomes available within the attempts, otherwise False. """ attempts = 0 while attempts < max_attempts: if torch.cuda.is_available(): manage_gpu_resources(1) logger.info("GPU is now available for training.") return True time.sleep(poll_interval) attempts += 1 logger.info(f"Polling for GPU availability... attempt {attempts}/{max_attempts}") return False def train_chapter(self, chapter_num: int, processed_verses: List[Dict], chunk_size: int = 5, # Reduced chunk size num_train_epochs: int = 5, # Lower epochs for testing per_device_train_batch_size: int = 1, learning_rate: float = 3e-5, weight_decay: float = 0.01, gradient_accumulation_steps: int = 32) -> bool: """ Splits chapter data into chunks and trains incrementally. The pipeline starts on CPU. After each chunk is trained on CPU, it polls for GPU. If GPU becomes available, the model is moved to GPU for subsequent training. In case GPU training fails, it falls back to CPU. """ total_examples = len(processed_verses) total_chunks = math.ceil(total_examples / chunk_size) logger.info(f"Chapter {chapter_num}: {total_examples} examples, {total_chunks} chunks.") for chunk_index in range(total_chunks): chunk_data = processed_verses[chunk_index * chunk_size: (chunk_index + 1) * chunk_size] dataset = self.prepare_training_data(chunk_data) chunk_output_dir = os.path.join(self.checkpoint_dir, f"chapter_{chapter_num}", f"chunk_{chunk_index}") os.makedirs(chunk_output_dir, exist_ok=True) training_args = TrainingArguments( output_dir=chunk_output_dir, overwrite_output_dir=True, num_train_epochs=num_train_epochs, per_device_train_batch_size=per_device_train_batch_size, learning_rate=learning_rate, weight_decay=weight_decay, gradient_accumulation_steps=gradient_accumulation_steps, fp16=False, remove_unused_columns=False, logging_steps=50, report_to="none", eval_strategy="no", no_cuda=(self.device == "cpu"), # Force-disable CUDA when on CPU dataloader_num_workers=0, dataloader_pin_memory=False ) logger.info(f"Training chunk {chunk_index+1}/{total_chunks} for Chapter {chapter_num} on device {self.device}...") success = self.train_chunk(training_args, dataset, chunk_output_dir) # If training fails on GPU, fall back to CPU. if not success and self.device == "cuda": logger.info(f"GPU error detected on chunk {chunk_index+1}. Shifting to CPU for this chunk...") self.model.to("cpu") self.device = "cpu" training_args.no_cuda = True training_args.optim = "adamw_torch" # Explicit optimizer for CPU success = self.train_chunk(training_args, dataset, chunk_output_dir) if not success: logger.error(f"Training failed for Chapter {chapter_num} on chunk {chunk_index+1} even on CPU. Stopping chapter training.") return False # If running on CPU, poll for GPU availability after the chunk if self.device == "cpu": if self.poll_for_gpu(): logger.info("GPU available; switching model to GPU for subsequent chunks.") self.model.to("cuda") self.device = "cuda" logger.info(f"Completed training for Chapter {chapter_num}") return True class QuranicPipeline: """Integrates data processing and incremental model training for all chapters.""" def __init__(self, source_dir: str = ".", working_dir: str = "working_directory", start_chapter: int = 1, end_chapter: int = 114): self.source_dir = source_dir self.working_dir = working_dir self.start_chapter = start_chapter self.end_chapter = end_chapter self.setup_directories() global logger logger = logging.getLogger(__name__) self.state = { "last_processed_chapter": 0, "last_trained_chapter": 0, "current_state": "initialized", "errors": [], "start_time": datetime.now().isoformat() } self.load_state() try: logger.info("Initializing Quranic Data Processor...") self.processor = QuranicDataProcessor( source_dir=self.source_dir, output_dir=os.path.join(self.working_dir, "processed_data") ) logger.info("Initializing Quranic Model Trainer...") self.trainer = QuranicModelTrainer( model_name="google/gemma-2-2b", processed_data_dir=os.path.join(self.working_dir, "processed_data"), checkpoint_dir=os.path.join(self.working_dir, "checkpoints") ) self.state["current_state"] = "ready" self.save_state() except Exception as e: self.handle_error("Initialization failed", e) raise def setup_directories(self): dirs = [ self.working_dir, os.path.join(self.working_dir, "processed_data"), os.path.join(self.working_dir, "checkpoints"), os.path.join(self.working_dir, "logs"), os.path.join(self.working_dir, "state") ] for d in dirs: os.makedirs(d, exist_ok=True) def load_state(self): state_file = os.path.join(self.working_dir, "state", "pipeline_state.json") if os.path.exists(state_file): try: with open(state_file, 'r') as f: saved_state = json.load(f) self.state.update(saved_state) logger.info(f"Loaded previous state: Last processed chapter {self.state.get('last_processed_chapter')}, last trained chapter {self.state.get('last_trained_chapter')}") except Exception as e: logger.warning(f"Could not load previous state: {str(e)}") def save_state(self): state_file = os.path.join(self.working_dir, "state", "pipeline_state.json") with open(state_file, 'w') as f: json.dump(self.state, f, indent=2) def handle_error(self, context: str, error: Exception): error_detail = { "timestamp": datetime.now().isoformat(), "context": context, "error": str(error), "traceback": traceback.format_exc() } self.state.setdefault("errors", []).append(error_detail) logger.error(f"{context}: {str(error)}") self.save_state() def run_pipeline(self): """Runs processing and training for chapters sequentially, then saves the final model.""" logger.info("Starting pipeline execution") try: if not self.processor.load_source_files(): raise Exception("Failed to load source files") for chapter in range(self.start_chapter, self.end_chapter + 1): logger.info(f"=== Processing Chapter {chapter} ===") processed_chapter_data = [] verse = 1 while True: verse_data = self.processor.process_verse(chapter, verse) if verse_data is None: break processed_chapter_data.append(asdict(verse_data)) verse += 1 if processed_chapter_data: success = self.trainer.train_chapter(chapter, processed_chapter_data) if not success: logger.error(f"Training failed for Chapter {chapter}. Stopping pipeline.") break self.state["last_trained_chapter"] = chapter self.save_state() else: logger.warning(f"No processed data for Chapter {chapter}") self.state["last_processed_chapter"] = chapter self.save_state() manage_memory() manage_gpu_resources() logger.info("Pipeline execution completed") final_model_dir = os.path.join(self.working_dir, "final_model") os.makedirs(final_model_dir, exist_ok=True) self.trainer.model.save_pretrained(final_model_dir) self.trainer.tokenizer.save_pretrained(final_model_dir) logger.info(f"Final model saved to {final_model_dir}") except Exception as e: self.handle_error("Pipeline execution failed", e) raise @spaces.GPU() # Request ZeroGPU hardware for the Space def start_pipeline(): try: logger.info("Starting Quranic Training Pipeline with Gemma-2-2b") logger.info(f"PyTorch version: {torch.__version__}") logger.info(f"CUDA available: {torch.cuda.is_available()}") if torch.cuda.is_available(): logger.info(f"CUDA device count: {torch.cuda.device_count()}") logger.info(f"CUDA device name: {torch.cuda.get_device_name(0)}") if not os.environ.get("HF_TOKEN"): logger.warning("HF_TOKEN environment variable not set. Model loading may fail.") required_files = [ 'quranic-corpus-morphology-0.4.txt', 'en.sample.quran-maududi.txt', 'en.w4w.qurandev.txt' ] missing_files = [f for f in required_files if not os.path.exists(f)] if missing_files: return f"Missing required data files: {', '.join(missing_files)}" pipeline = QuranicPipeline( source_dir=".", working_dir="working_directory", start_chapter=1, end_chapter=114 ) pipeline.run_pipeline() return "Pipeline execution completed successfully." except Exception as e: error_msg = f"Pipeline execution failed: {str(e)}\n{traceback.format_exc()}" logger.error(error_msg) return error_msg iface = gr.Interface( fn=start_pipeline, inputs=[], outputs=gr.Textbox(label="Pipeline Status", lines=10), title="Quranic Training Pipeline for Gemma-2-2b", description="""This pipeline fine-tunes Google's Gemma-2-2b model on Quranic data. Click 'Submit' to trigger the Quranic data processing and training pipeline on ZeroGPU. Requirements: - Transformers (==4.45.0) - Gradio (>=5.12.0) - PyTorch (==2.3.0) - psutil (==5.9.5) - Accelerate (>=0.26.0) The pipeline processes all 114 chapters of the Quran sequentially, with memory and GPU resource management optimizations. Checkpoint download links are provided after every training chunk.""" ) if __name__ == "__main__": iface.launch()