Finetune / appt4a.py
eBlessings's picture
Rename app.py to appt4a.py
92f05f7 verified
#!/usr/bin/env python3
"""
app.py – Quranic Data Training Pipeline Endpoint for T4 Medium
----------------------------------------------------------------
Updated for T4 medium (8 vCores, 30 GB RAM, 16 GB VRAM) with FP16 training,
checkpoint saving with download link, and enhanced error handling.
"""
import json
import logging
import os
import traceback
import gc
import time
import psutil
import math
import shutil
from datetime import datetime
from typing import Dict, List, Optional
from dataclasses import dataclass, asdict
import torch
torch.set_num_threads(8)
from torch.utils.data import Dataset
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
TrainingArguments,
Trainer,
DataCollatorForLanguageModeling,
__version__ as transformers_version
)
from threading import Lock
from accelerate import Accelerator
import gradio as gr
import spaces
# Set an environment variable to help mitigate CUDA allocator fragmentation issues.
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128"
# Updated version requirements
MIN_TRANSFORMERS_VERSION = "4.45.0"
if tuple(map(int, transformers_version.split("."))) < tuple(map(int, MIN_TRANSFORMERS_VERSION.split("."))):
logging.warning(f"Transformers version {transformers_version} detected. Please upgrade to at least {MIN_TRANSFORMERS_VERSION}")
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('pipeline.log'),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
def manage_memory(threshold_percent: int = 90, min_available_mb: int = 500, sleep_duration: int = 10):
vm = psutil.virtual_memory()
used_percent = vm.percent
available_mb = vm.available / (1024 * 1024)
logger.info(f"Memory usage: {used_percent}% used, {available_mb:.2f} MB available")
if used_percent > threshold_percent or available_mb < min_available_mb:
logger.warning("High memory usage detected, forcing garbage collection and sleeping...")
gc.collect()
time.sleep(sleep_duration)
def manage_gpu_resources(sleep_duration: int = 5):
if torch.cuda.is_available():
allocated = torch.cuda.memory_allocated() / (1024 * 1024)
cached = torch.cuda.memory_reserved() / (1024 * 1024)
logger.info(f"GPU Memory Allocated: {allocated:.2f} MB, Reserved: {cached:.2f} MB")
torch.cuda.empty_cache()
time.sleep(sleep_duration)
def zip_checkpoint(checkpoint_dir: str) -> str:
zip_file = checkpoint_dir + ".zip"
if os.path.exists(zip_file):
os.remove(zip_file)
shutil.make_archive(checkpoint_dir, 'zip', checkpoint_dir)
return os.path.basename(zip_file)
@dataclass
class WordAnalysis:
arabic: str
translation: str
position: str
morphology: Dict
features: List[str]
root: str
location: str
metadata: Dict
@dataclass
class VerseData:
chapter: int
verse: int
arabic_text: str
translation: str
words: List[WordAnalysis]
metadata: Dict
class QuranicDataset(Dataset):
def __init__(self, processed_data: List[Dict], tokenizer):
self.examples = []
self.tokenizer = tokenizer
for verse_data in processed_data:
self.examples.extend(self._create_training_examples(verse_data))
def _create_training_examples(self, verse_data: Dict) -> List[Dict]:
examples = []
text_block = (
f"[VERSE {verse_data['chapter']}:{verse_data['verse']}]\n"
f"Arabic: {verse_data['arabic_text']}\n"
f"Translation: {verse_data['translation']}\n"
"Morphological Analysis:\n"
)
for word in verse_data['words']:
text_block += (
f"[WORD] {word['arabic']}\n"
f"Root: {word['root']}\n"
f"Features: {', '.join(word['features'])}\n"
)
examples.append(self._format_example(text_block))
return examples
def _format_example(self, text: str) -> Dict:
encodings = self.tokenizer(
text,
truncation=True,
max_length=64,
padding="max_length",
return_tensors="pt"
)
return {
"input_ids": encodings["input_ids"][0].cpu(),
"attention_mask": encodings["attention_mask"][0].cpu()
}
def __len__(self):
return len(self.examples)
def __getitem__(self, idx):
return self.examples[idx]
class QuranicDataProcessor:
def __init__(self, source_dir: str, output_dir: str):
self.source_dir = source_dir
self.output_dir = output_dir
self.morphological_data: Dict[str, Dict] = {}
self.word_by_word_data: Dict[str, List[str]] = {}
self.translation_data: Dict[str, str] = {}
self.processing_lock = Lock()
os.makedirs(output_dir, exist_ok=True)
os.makedirs(os.path.join(output_dir, 'json'), exist_ok=True)
os.makedirs(os.path.join(output_dir, 'txt'), exist_ok=True)
os.makedirs(os.path.join(output_dir, 'checkpoints'), exist_ok=True)
logger.info(f"Initialized processor with source dir: {source_dir}")
def load_source_files(self) -> bool:
try:
logger.info("Loading morphological data...")
morph_path = os.path.join(self.source_dir, 'quranic-corpus-morphology-0.4.txt')
with open(morph_path, 'r', encoding='utf-8') as f:
next(f)
for line in f:
if line.strip() and not line.startswith('#'):
parts = line.strip().split('\t')
if len(parts) >= 4:
location = parts[0].strip('()')
self.morphological_data[location] = {
'form': parts[1],
'tag': parts[2],
'features': parts[3]
}
logger.info(f"Loaded {len(self.morphological_data)} morphological entries")
logger.info("Loading translation data...")
trans_path = os.path.join(self.source_dir, 'en.sample.quran-maududi.txt')
with open(trans_path, 'r', encoding='utf-8') as f:
next(f)
for line in f:
if line.strip():
parts = line.strip().split('|')
if len(parts) >= 3:
key = f"{parts[0]}:{parts[1]}"
self.translation_data[key] = parts[2].strip()
logger.info(f"Loaded {len(self.translation_data)} verse translations")
logger.info("Loading word-by-word data...")
word_path = os.path.join(self.source_dir, 'en.w4w.qurandev.txt')
with open(word_path, 'r', encoding='utf-8-sig') as f:
lines = [line.strip() for line in f if line.strip()]
sorted_keys = sorted(self.translation_data.keys(), key=lambda x: (int(x.split(':')[0]), int(x.split(':')[1])))
if len(lines) != len(sorted_keys):
logger.warning("Mismatch between word-by-word file and translation data")
for i, verse_key in enumerate(sorted_keys):
if i < len(lines):
words = [w.strip() for w in lines[i].split('|') if w.strip()]
self.word_by_word_data[verse_key] = words
logger.info(f"Loaded word-by-word data for {len(self.word_by_word_data)} verses")
return True
except Exception as e:
logger.error(f"Error loading source files: {str(e)}")
logger.error(traceback.format_exc())
return False
def process_verse(self, chapter: int, verse: int) -> Optional[VerseData]:
try:
verse_ref = f"{chapter}:{verse}"
logger.info(f"Processing verse {verse_ref}")
translation = self.translation_data.get(verse_ref)
if not translation:
logger.warning(f"No translation for verse {verse_ref}")
return None
verse_word_list = self.word_by_word_data.get(verse_ref, [])
if not verse_word_list:
logger.warning(f"No word-by-word data for verse {verse_ref}")
return None
verse_words: List[WordAnalysis] = []
arabic_text = ""
for pos in range(1, len(verse_word_list) + 1):
pattern = f"{chapter}:{verse}:{pos}:"
matching_entries = [data for loc, data in self.morphological_data.items() if loc.startswith(pattern)]
if not matching_entries:
logger.debug(f"No morphological data for {pattern}")
continue
combined_form = " ".join(entry['form'] for entry in matching_entries)
combined_features = []
root = ""
for entry in matching_entries:
features = entry['features'].split('|')
combined_features.extend(features)
if not root:
for f in features:
if 'ROOT:' in f:
root = f.split('ROOT:')[1]
break
word_translation = verse_word_list[pos - 1]
word = WordAnalysis(
arabic=combined_form,
translation=word_translation,
position=str(pos),
morphology=matching_entries[0],
features=combined_features,
root=root,
location=f"{chapter}:{verse}:{pos}",
metadata={}
)
verse_words.append(word)
arabic_text += f" {combined_form}"
verse_data = VerseData(
chapter=chapter,
verse=verse,
arabic_text=arabic_text.strip(),
translation=translation,
words=verse_words,
metadata={
"processed_timestamp": datetime.now().isoformat(),
"word_count": len(verse_words)
}
)
self._save_verse_data(verse_data)
return verse_data
except Exception as e:
logger.error(f"Error processing verse {chapter}:{verse}: {str(e)}")
logger.error(traceback.format_exc())
return None
def _save_verse_data(self, verse_data: VerseData):
try:
verse_ref = f"{verse_data.chapter}:{verse_data.verse}"
json_path = os.path.join(self.output_dir, 'json', f'verse_{verse_ref.replace(":", "_")}.json')
with open(json_path, 'w', encoding='utf-8') as f:
json.dump(asdict(verse_data), f, ensure_ascii=False, indent=2)
txt_path = os.path.join(self.output_dir, 'txt', f'verse_{verse_ref.replace(":", "_")}.txt')
with open(txt_path, 'w', encoding='utf-8') as f:
f.write(f"=== Verse {verse_ref} ===\n\n")
f.write(f"Arabic Text:\n{verse_data.arabic_text}\n\n")
f.write(f"Translation:\n{verse_data.translation}\n\n")
f.write("Word Analysis:\n")
for i, word in enumerate(verse_data.words, 1):
f.write(f"\nWord {i}:\n")
f.write(f" Arabic: {word.arabic}\n")
f.write(f" Translation: {word.translation}\n")
f.write(f" Root: {word.root}\n")
f.write(" Features:\n")
for feature in word.features:
f.write(f" - {feature}\n")
f.write("\n")
logger.info(f"Saved verse data to {json_path} and {txt_path}")
except Exception as e:
logger.error(f"Error saving verse data: {str(e)}")
logger.error(traceback.format_exc())
class QuranicModelTrainer:
def __init__(self,
model_name: str = "google/gemma-2-2b",
processed_data_dir: str = "processed_data",
checkpoint_dir: str = "checkpoints"):
self.processed_data_dir = processed_data_dir
self.checkpoint_dir = checkpoint_dir
self.accelerator = Accelerator()
logger.info("Initializing Accelerator...")
self.tokenizer = AutoTokenizer.from_pretrained(
model_name,
token=os.environ.get("HF_TOKEN"),
additional_special_tokens=["[VERSE]", "[WORD]", "[ROOT]", "[FEATURES]"],
trust_remote_code=True
)
if self.tokenizer.pad_token is None:
self.tokenizer.add_special_tokens({"pad_token": "[PAD]"})
try:
self.model = AutoModelForCausalLM.from_pretrained(
model_name,
token=os.environ.get("HF_TOKEN"),
torch_dtype=torch.float32,
low_cpu_mem_usage=True,
trust_remote_code=True,
attn_implementation="eager"
)
except Exception as e:
logger.error(f"Error loading model directly: {str(e)}")
logger.info("Attempting to load with fallback parameters...")
from transformers import AutoConfig
config = AutoConfig.from_pretrained(
model_name,
token=os.environ.get("HF_TOKEN"),
trust_remote_code=True
)
self.model = AutoModelForCausalLM.from_pretrained(
model_name,
token=os.environ.get("HF_TOKEN"),
config=config,
torch_dtype=torch.float32,
low_cpu_mem_usage=True,
trust_remote_code=True,
revision="main",
attn_implementation="eager"
)
self.model.resize_token_embeddings(len(self.tokenizer))
self.model.train()
self.model.config.use_cache = False
self.model = self.accelerator.prepare(self.model)
if hasattr(self.model, "gradient_checkpointing_enable"):
self.model.gradient_checkpointing_enable()
else:
logger.warning("Gradient checkpointing not available for this model")
def prepare_training_data(self, chapter_data: List[Dict]) -> Dataset:
return QuranicDataset(chapter_data, self.tokenizer)
def train_chunk(self, training_args: TrainingArguments, dataset: Dataset, chunk_output_dir: str) -> bool:
try:
data_collator = DataCollatorForLanguageModeling(
tokenizer=self.tokenizer,
mlm=False
)
trainer = Trainer(
model=self.model,
args=training_args,
train_dataset=dataset,
tokenizer=self.tokenizer,
data_collator=data_collator
)
logger.info(f"Starting training on chunk at {chunk_output_dir} with device {self.accelerator.device}")
trainer.train()
trainer.save_model(chunk_output_dir)
zip_filename = zip_checkpoint(chunk_output_dir)
base_url = os.environ.get("HF_SPACE_URL", "http://localhost")
download_link = f"{base_url}/file/{zip_filename}"
logger.info(f"Checkpoint download link: {download_link}")
with open(os.path.join(chunk_output_dir, "download_link.txt"), "w") as f:
f.write(download_link)
del trainer
gc.collect()
manage_memory()
manage_gpu_resources()
return True
except RuntimeError as e:
if "NVML_SUCCESS" in str(e):
logger.error(f"Error in training chunk at {chunk_output_dir}: {str(e)}")
logger.info("GPU error detected. Shifting to CPU...")
if torch.cuda.is_available():
torch.cuda.empty_cache()
self.model = self.model.to("cpu")
training_args.no_cuda = True
try:
trainer = Trainer(
model=self.model,
args=training_args,
train_dataset=dataset,
tokenizer=self.tokenizer,
data_collator=data_collator
)
logger.info(f"Retrying training on CPU for chunk at {chunk_output_dir}")
trainer.train()
trainer.save_model(chunk_output_dir)
zip_filename = zip_checkpoint(chunk_output_dir)
base_url = os.environ.get("HF_SPACE_URL", "http://localhost")
download_link = f"{base_url}/file/{zip_filename}"
logger.info(f"Checkpoint download link: {download_link}")
with open(os.path.join(chunk_output_dir, "download_link.txt"), "w") as f:
f.write(download_link)
del trainer
gc.collect()
manage_memory()
return True
except Exception as cpu_e:
logger.error(f"Training failed on CPU: {str(cpu_e)}")
logger.error(traceback.format_exc())
return False
else:
logger.error(f"Error in training chunk at {chunk_output_dir}: {str(e)}")
logger.error(traceback.format_exc())
return False
def poll_for_gpu(self, poll_interval: int = 10, max_attempts: int = 30) -> bool:
attempts = 0
while attempts < max_attempts:
if torch.cuda.is_available():
manage_gpu_resources(1)
logger.info("GPU is now available for training.")
return True
time.sleep(poll_interval)
attempts += 1
logger.info(f"Polling for GPU availability... attempt {attempts}/{max_attempts}")
return False
def train_chapter(self,
chapter_num: int,
processed_verses: List[Dict],
chunk_size: int = 5,
num_train_epochs: int = 5,
per_device_train_batch_size: int = 1,
learning_rate: float = 3e-5,
weight_decay: float = 0.01,
gradient_accumulation_steps: int = 32) -> bool:
total_examples = len(processed_verses)
total_chunks = math.ceil(total_examples / chunk_size)
logger.info(f"Chapter {chapter_num}: {total_examples} examples, {total_chunks} chunks.")
for chunk_index in range(total_chunks):
chunk_data = processed_verses[chunk_index * chunk_size: (chunk_index + 1) * chunk_size]
dataset = self.prepare_training_data(chunk_data)
chunk_output_dir = os.path.join(self.checkpoint_dir, f"chapter_{chapter_num}", f"chunk_{chunk_index}")
os.makedirs(chunk_output_dir, exist_ok=True)
# For T4, enable FP16 training for better performance.
training_args = TrainingArguments(
output_dir=chunk_output_dir,
overwrite_output_dir=True,
num_train_epochs=num_train_epochs,
per_device_train_batch_size=per_device_train_batch_size,
learning_rate=learning_rate,
weight_decay=weight_decay,
gradient_accumulation_steps=gradient_accumulation_steps,
fp16=(self.accelerator.device.type == "cuda"),
remove_unused_columns=False,
logging_steps=50,
report_to="none",
eval_strategy="no",
no_cuda=(self.accelerator.device.type != "cuda"),
optim="adamw_torch",
dataloader_num_workers=0,
dataloader_pin_memory=False
)
logger.info(f"Training chunk {chunk_index+1}/{total_chunks} for Chapter {chapter_num}...")
success = self.train_chunk(training_args, dataset, chunk_output_dir)
if not success and self.accelerator.device.type == "cuda":
logger.error(f"Training failed for Chapter {chapter_num} on chunk {chunk_index+1}.")
return False
logger.info(f"Completed training for Chapter {chapter_num}")
return True
class QuranicPipeline:
def __init__(self,
source_dir: str = ".",
working_dir: str = "working_directory",
start_chapter: int = 1,
end_chapter: int = 114):
self.source_dir = source_dir
self.working_dir = working_dir
self.start_chapter = start_chapter
self.end_chapter = end_chapter
self.setup_directories()
global logger
logger = logging.getLogger(__name__)
self.state = {
"last_processed_chapter": 0,
"last_trained_chapter": 0,
"current_state": "initialized",
"errors": [],
"start_time": datetime.now().isoformat()
}
self.load_state()
try:
logger.info("Initializing Quranic Data Processor...")
self.processor = QuranicDataProcessor(
source_dir=self.source_dir,
output_dir=os.path.join(self.working_dir, "processed_data")
)
logger.info("Initializing Quranic Model Trainer...")
self.trainer = QuranicModelTrainer(
model_name="google/gemma-2-2b",
processed_data_dir=os.path.join(self.working_dir, "processed_data"),
checkpoint_dir=os.path.join(self.working_dir, "checkpoints")
)
self.state["current_state"] = "ready"
self.save_state()
except Exception as e:
self.handle_error("Initialization failed", e)
raise
def setup_directories(self):
dirs = [
self.working_dir,
os.path.join(self.working_dir, "processed_data"),
os.path.join(self.working_dir, "checkpoints"),
os.path.join(self.working_dir, "logs"),
os.path.join(self.working_dir, "state")
]
for d in dirs:
os.makedirs(d, exist_ok=True)
def load_state(self):
state_file = os.path.join(self.working_dir, "state", "pipeline_state.json")
if os.path.exists(state_file):
try:
with open(state_file, 'r') as f:
saved_state = json.load(f)
self.state.update(saved_state)
logger.info(f"Loaded previous state: Last processed chapter {self.state.get('last_processed_chapter')}, last trained chapter {self.state.get('last_trained_chapter')}")
except Exception as e:
logger.warning(f"Could not load previous state: {str(e)}")
def save_state(self):
state_file = os.path.join(self.working_dir, "state", "pipeline_state.json")
with open(state_file, 'w') as f:
json.dump(self.state, f, indent=2)
def handle_error(self, context: str, error: Exception):
error_detail = {
"timestamp": datetime.now().isoformat(),
"context": context,
"error": str(error),
"traceback": traceback.format_exc()
}
self.state.setdefault("errors", []).append(error_detail)
logger.error(f"{context}: {str(error)}")
self.save_state()
def run_pipeline(self):
logger.info("Starting pipeline execution")
try:
if not self.processor.load_source_files():
raise Exception("Failed to load source files")
for chapter in range(self.start_chapter, self.end_chapter + 1):
logger.info(f"=== Processing Chapter {chapter} ===")
processed_chapter_data = []
verse = 1
while True:
verse_data = self.processor.process_verse(chapter, verse)
if verse_data is None:
break
processed_chapter_data.append(asdict(verse_data))
verse += 1
if processed_chapter_data:
success = self.trainer.train_chapter(chapter, processed_chapter_data)
if not success:
logger.error(f"Training failed for Chapter {chapter}. Stopping pipeline.")
break
self.state["last_trained_chapter"] = chapter
self.save_state()
else:
logger.warning(f"No processed data for Chapter {chapter}")
self.state["last_processed_chapter"] = chapter
self.save_state()
manage_memory()
manage_gpu_resources()
logger.info("Pipeline execution completed")
final_model_dir = os.path.join(self.working_dir, "final_model")
os.makedirs(final_model_dir, exist_ok=True)
self.trainer.accelerator.wait_for_everyone()
self.trainer.accelerator.save_model(self.trainer.model, final_model_dir)
self.trainer.tokenizer.save_pretrained(final_model_dir)
logger.info(f"Final model saved to {final_model_dir}")
except Exception as e:
self.handle_error("Pipeline execution failed", e)
raise
@spaces.GPU()
def start_pipeline():
try:
logger.info("Starting Quranic Training Pipeline with Gemma-2-2b on T4 Medium")
logger.info(f"PyTorch version: {torch.__version__}")
logger.info(f"CUDA available: {torch.cuda.is_available()}")
if torch.cuda.is_available():
logger.info(f"CUDA device count: {torch.cuda.device_count()}")
logger.info(f"CUDA device name: {torch.cuda.get_device_name(0)}")
if not os.environ.get("HF_TOKEN"):
logger.warning("HF_TOKEN environment variable not set. Model loading may fail.")
required_files = [
'quranic-corpus-morphology-0.4.txt',
'en.sample.quran-maududi.txt',
'en.w4w.qurandev.txt'
]
missing_files = [f for f in required_files if not os.path.exists(f)]
if missing_files:
return f"Missing required data files: {', '.join(missing_files)}"
pipeline = QuranicPipeline(
source_dir=".",
working_dir="working_directory",
start_chapter=1,
end_chapter=114
)
pipeline.run_pipeline()
return "Pipeline execution completed successfully."
except Exception as e:
error_msg = f"Pipeline execution failed: {str(e)}\n{traceback.format_exc()}"
logger.error(error_msg)
return error_msg
iface = gr.Interface(
fn=start_pipeline,
inputs=[],
outputs=gr.Textbox(label="Pipeline Status", lines=10),
title="Quranic Training Pipeline for Gemma-2-2b on T4 Medium",
description="""This pipeline is updated for T4 medium with FP16 training,
checkpoint saving (download link provided), and enhanced error handling.
"""
)
if __name__ == "__main__":
iface.launch()