project1 / app.py
dtkne's picture
Update app.py
32920c5 verified
import gradio as gr
import os
from moviepy.editor import VideoFileClip
from transformers import pipeline
# Load models
asr = pipeline(task="automatic-speech-recognition", model="distil-whisper/distil-small.en")
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
qa_pipeline = pipeline("question-answering", model="distilbert-base-cased-distilled-squad")
stored_transcript = ""
def transcribe_from_video(video_file):
global stored_transcript
if video_file is None:
return "Error: No video file provided.", ""
try:
video = VideoFileClip(video_file)
audio_path = "temp_audio.wav"
video.audio.write_audiofile(audio_path, codec='pcm_s16le')
transcription_result = asr(audio_path, return_timestamps=True)
transcribed_text = " ".join([chunk["text"] for chunk in transcription_result["chunks"]])
stored_transcript = transcribed_text
if len(transcribed_text.split()) < 50:
summarized_text = "Text too short to summarize."
else:
word_count = len(transcribed_text.split())
max_summary_length = max(50, int(word_count * 0.3))
min_summary_length = max(20, int(word_count * 0.15))
summary = summarizer(
transcribed_text,
max_length=max_summary_length,
min_length=min_summary_length,
do_sample=False
)
summarized_text = summary[0]["summary_text"]
return transcribed_text, summarized_text
except Exception as e:
return f"Error: {str(e)}", ""
def transcribe_from_audio(audio_file):
global stored_transcript
if audio_file is None:
return "Error: No audio recorded.", ""
try:
transcription_result = asr(audio_file, return_timestamps=True)
transcribed_text = " ".join([chunk["text"] for chunk in transcription_result["chunks"]])
stored_transcript = transcribed_text
if len(transcribed_text.split()) < 50:
summarized_text = "Text too short to summarize."
else:
word_count = len(transcribed_text.split())
max_summary_length = max(50, int(word_count * 0.3))
min_summary_length = max(20, int(word_count * 0.15))
summary = summarizer(
transcribed_text,
max_length=max_summary_length,
min_length=min_summary_length,
do_sample=False
)
summarized_text = summary[0]["summary_text"]
return transcribed_text, summarized_text
except Exception as e:
return f"Error: {str(e)}", ""
def answer_question(question):
global stored_transcript
if not stored_transcript:
return "Please transcribe a video or record audio first."
result = qa_pipeline(question=question, context=stored_transcript)
return result["answer"]
# UI
with gr.Blocks(css="""
body { background-color: black !important; }
.gradio-container { color: #FFFF33 !important; }
button { background-color: #FFFF33 !important; color: black !important; border: none !important; }
input, textarea, .gr-textbox, .gr-video, .gr-audio { background-color: #111 !important; color: #FFFF33 !important; border-color: #FFFF33 !important; }
""") as iface:
gr.HTML("<h1 style='color:#FFFF33'>🎀 Video & Voice Transcriber, Summarizer & Q&A</h1>")
gr.HTML("<p style='color:#CCCC33'>Upload a video or record speech to get transcript, summary, and ask questions.</p>")
with gr.Tab("πŸŽ₯ Video Upload"):
video_input = gr.Video(label="Upload Video (.mp4)", interactive=True)
transcribe_btn = gr.Button("πŸš€ Transcribe from Video")
transcribed_text_v = gr.Textbox(label="Transcribed Text", lines=8, interactive=False)
summarized_text_v = gr.Textbox(label="Summarized Text", lines=8, interactive=False)
transcribe_btn.click(fn=transcribe_from_video, inputs=video_input, outputs=[transcribed_text_v, summarized_text_v])
with gr.Tab("πŸŽ™οΈ Record Speech"):
audio_input = gr.Audio(type="filepath", label="Record Audio")
record_btn = gr.Button("🎧 Transcribe from Audio")
transcribed_text_a = gr.Textbox(label="Transcribed Text", lines=8, interactive=False)
summarized_text_a = gr.Textbox(label="Summarized Text", lines=8, interactive=False)
record_btn.click(fn=transcribe_from_audio, inputs=audio_input, outputs=[transcribed_text_a, summarized_text_a])
with gr.Tab("❓ Ask Questions"):
question_input = gr.Textbox(label="Ask a question about the transcript", placeholder="E.g., What was the main topic?")
ask_btn = gr.Button("πŸ” Get Answer")
answer_output = gr.Textbox(label="Answer", interactive=False)
ask_btn.click(fn=answer_question, inputs=question_input, outputs=answer_output)
# Launch
port = int(os.environ.get('PORT1', 7860))
url = iface.launch(share=True, server_port=port)
print(f"Interface is live at: {url}")