File size: 11,535 Bytes
e57e56e
c5107b8
2d02389
 
9852078
e57e56e
 
713b966
2d02389
713b966
5f0b175
7d2b600
9852078
 
713b966
 
9852078
 
d266723
 
9852078
 
 
 
713b966
 
d266723
 
9852078
f4ee795
713b966
1d2493f
f4ee795
 
 
 
 
 
 
 
 
 
 
 
 
 
2d02389
 
f4ee795
2d02389
1d2493f
2d02389
e57e56e
1d2493f
d4f4f27
bfd7db7
32c7193
f4ee795
f35f85f
 
 
 
 
 
 
 
 
 
d266723
f35f85f
 
 
 
 
 
 
 
 
d266723
f35f85f
 
e57e56e
 
 
 
 
 
 
c9255a6
e57e56e
 
 
 
 
 
 
 
 
 
 
7c6aee0
e57e56e
 
 
 
 
375d4e1
e57e56e
 
 
 
375d4e1
 
 
 
 
 
 
 
e57e56e
 
072b7db
375d4e1
 
c9255a6
 
 
 
 
 
 
 
 
7d2b600
4fb6838
ce7e646
 
 
 
 
4fb6838
 
c9255a6
 
 
4fb6838
7d2b600
363d2a7
79614b8
 
c39d703
a543eda
 
c9255a6
e403b32
b0b56c3
363d2a7
79614b8
45a6a9c
 
4fb6838
ce7e646
 
 
 
 
7d2b600
 
ce7e646
e57e56e
 
 
 
 
 
 
 
 
 
7c6aee0
 
 
 
 
e57e56e
 
f35f85f
e57e56e
7c6aee0
 
 
 
e57e56e
 
 
 
 
 
 
 
 
 
7d2b600
e57e56e
7c6aee0
 
 
f35f85f
7d2b600
0cd7834
 
c9255a6
0cd7834
 
 
 
e57e56e
7c6aee0
c9255a6
7c6aee0
 
 
 
 
e57e56e
 
7c6aee0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import gradio as gr
import time
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import os

# ---- LOAD LLM ----
model_name = "Qwen/Qwen1.5-0.5B"

# No need for token usually; Qwen is public, but keeping it flexible
hf_token = os.getenv("HF_TOKEN")

tokenizer = AutoTokenizer.from_pretrained(
    model_name,
    token=hf_token,         # can be None if not set
    trust_remote_code=True  # required for Qwen
)

device = "cuda" if torch.cuda.is_available() else "cpu"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    token=hf_token,
    trust_remote_code=True,
    torch_dtype=torch.float16 if device == "cuda" else torch.float32,
    device_map="auto" if device == "cuda" else None
).to(device)

# --- Define llm generation function ---
def llm(prompt, max_new_tokens=400, temperature=0.3, do_sample=True):
    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)

    generation_kwargs = {
        "max_new_tokens": max_new_tokens,
        "do_sample": do_sample,
        "pad_token_id": tokenizer.eos_token_id,
    }

    # Only add temperature/top_p if sampling is enabled
    if do_sample:
        generation_kwargs.update({
            "temperature": temperature,
            "top_p": 0.95,
            "top_k": 50
        })

    output = model.generate(
        **inputs,
        **generation_kwargs
    )

    generated_text = tokenizer.decode(output[0], skip_special_tokens=True)

    return [{"generated_text": generated_text}]




# Define all the screening questions
questions = [
    # Generalized Anxiety & Somatic Concerns
    # =========================
    ("Have you been a chronic worrier for 6 months or more?", "क्या आप 6 महीने या उससे अधिक समय से लगातार चिंता कर रहे हैं?"),
    ("Have you been preoccupied with worries about work, family, or health for the past 6 months?", "क्या आप पिछले 6 महीनों से काम, परिवार या स्वास्थ्य को लेकर चिंतित रहे हैं?"),
    ("Have you had frequent headaches, body pain, or fatigue for several weeks without a clear physical cause?", "क्या आपको पिछले कई हफ्तों से बिना स्पष्ट शारीरिक कारण के सिरदर्द, बदन दर्द या थकान रही है?"),
    ("Have you experienced anxiety symptoms like palpitations, choking, or dry mouth for the past 6 months?", "क्या आपको पिछले 6 महीनों से घबराहट जैसे लक्षण (जैसे धड़कन तेज होना, गला बंद लगना, मुंह सूखना) महसूस हुए हैं?"),
    ("Have these anxiety symptoms occurred in most situations over the past 6 months?", "क्या ये घबराहट के लक्षण पिछले 6 महीनों में ज्यादातर स्थितियों में हुए हैं?"),
    ("Have you had difficulty concentrating or thinking clearly for at least 2 weeks?", "क्या आपको पिछले 2 हफ्तों से ध्यान केंद्रित करने या स्पष्ट रूप से सोचने में कठिनाई हुई है?"),
    


    ("Do you often have difficulty staying focused during tasks or conversations?", "क्या आपको कार्य करते समय या बातचीत के दौरान ध्यान केंद्रित करने में कठिनाई होती है?"),
    ("Do you frequently lose items or forget daily responsibilities (e.g., appointments, bills)?", "क्या आप अक्सर चीजें खो देते हैं या दैनिक ज़िम्मेदारियाँ भूल जाते हैं (जैसे अपॉइंटमेंट, बिल)?"),
    ("Do you struggle to organize tasks or manage your time effectively?", "क्या आपको कार्यों को व्यवस्थित करने या समय का सही उपयोग करने में कठिनाई होती है?"),
    ("Do you feel restless or find it hard to sit still for extended periods?", "क्या आप बेचैनी महसूस करते हैं या लंबे समय तक शांत बैठना मुश्किल लगता है?"),
    ("Do you often interrupt others or speak out without waiting your turn?", "क्या आप अक्सर दूसरों की बात काटते हैं या बिना रुके बोल पड़ते हैं?"),
    ("Do you procrastinate or avoid tasks that require sustained mental effort?", "क्या आप ऐसे कार्यों को टालते हैं जिनमें लंबे समय तक ध्यान केंद्रित करना होता है?"),
    ("Have these difficulties been present since childhood and continue to affect your work or relationships?", "क्या ये कठिनाइयाँ बचपन से रही हैं और अब भी आपके काम या रिश्तों को प्रभावित कर रही हैं?"),
    
]

# ---- STATE ----
state = {
    "index": 0,
    "responses": [""] * len(questions)
}

# ---- FUNCTIONS ----

def render_question():
    idx = state["index"]
    total = len(questions)
    en, hi = questions[idx]
    question_html = f"**Q{idx+1}. {en}**<br><span style='color:#666'>{hi}</span>"
    progress = f"Progress: Question {idx+1} of {total}"
    return (
        gr.update(value=question_html),
        gr.update(value=progress),
        gr.update(visible=True), gr.update(visible=True),
        gr.update(visible=(idx > 0)),
        gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
    )

def next_step(response):
    state["responses"][state["index"]] = response
    state["index"] += 1

    if state["index"] < len(questions):
        return render_question()
    else:
        return (
            gr.update(value="✅ All questions completed. Click 'Submit for AI Analysis'."),  # (question_display)
            gr.update(value=""),  # (progress_bar)
            gr.update(visible=False),  # yes_btn
            gr.update(visible=False),  # no_btn
            gr.update(visible=False),  # back_btn
            gr.update(visible=True),   # result_btn (Submit Button becomes visible here!)
            gr.update(visible=False),  # result_box (Textbox hidden)
            gr.update(visible=False)   # restart_btn hidden
        )




def format_yes_responses():
    yes_topics = []
    for (en, _), ans in zip(questions, state["responses"]):
        if ans.lower() == "yes":
            yes_topics.append(en)
    if not yes_topics:
        return "No significant symptoms reported."
    return "\n".join(yes_topics)

def run_final_analysis():
    yield (
        gr.update(value="⏳ Please wait... analyzing your responses 🧠"),   # question_display
        gr.update(value=""),                                               # progress_bar
        *[gr.update(visible=False) for _ in range(4)],                     # yes_btn, no_btn, back_btn, result_btn
        gr.update(visible=False),                                          # result_box
        gr.update(visible=False)                                           # restart_btn
    )

    time.sleep(1)

    yes_summary = format_yes_responses()

    prompt = (
    f"""The user has reported the following symptoms: {yes_summary}
Based on these symptoms, please write a short clinical impression summarizing the likely psychiatric condition and its further management.
On the basis of symptomes mentioned
"""
)





    output = llm(prompt, max_new_tokens=300, temperature=0.3, do_sample=False)
    ai_result = output[0]["generated_text"]

    yield (
        gr.update(value="✅ AI Analysis Completed."),       # question_display
        gr.update(value=""),                                # progress_bar
        *[gr.update(visible=False) for _ in range(4)],       # yes_btn, no_btn, back_btn, result_btn
        gr.update(value=ai_result, visible=True),           # result_box (important: both value+visible)
        gr.update(visible=True)                             # restart_btn
    )


def go_back():
    if state["index"] > 0:
        state["index"] -= 1
    return render_question()

def start_app():
    state["index"] = 0
    state["responses"] = [""] * len(questions)
    return render_question()

def restart_screening():
    state["index"] = 0
    state["responses"] = [""] * len(questions)
    return render_question()

# ---- GRADIO APP ----
with gr.Blocks(theme=gr.themes.Soft()) as app:
    gr.Markdown("## 🧠 MindScreen: Mental Health Self-Screening")
    gr.Markdown("### मानसिक स्वास्थ्य आत्म-स्क्रीनिंग प्रश्नावली")
    gr.Markdown(
        "**Note: Please choose 'Yes' only if the symptoms cause distress to you or your family, or if they interfere with your day-to-day functioning.**\n\n"
        "**नोट: कृपया 'हाँ' तभी चुनें जब ये लक्षण आपके या आपके परिवार के लिए परेशानी का कारण बन रहे हों, या आपकी दिनचर्या को प्रभावित करते हों।**"
    )

    progress_bar = gr.Markdown("")
    question_display = gr.Markdown("", elem_id="question-box")

    with gr.Row():
        yes_btn = gr.Button("Yes / हाँ", visible=False)
        no_btn = gr.Button("No / नहीं", visible=False)

    with gr.Row():
        back_btn = gr.Button("⬅️ Back / पीछे जाएं", visible=False)
        result_btn = gr.Button("🎯 Submit for AI Analysis", visible=False)

    with gr.Row():
        restart_btn = gr.Button("🔄 Start New Screening", visible=False)  # <-- Restart button

    with gr.Row():
        result_box = gr.Textbox(
            label="🧠 AI Interpretation (English + Hindi)",
            visible=False,
            lines=20,
            max_lines=25,
            show_copy_button=True,
            interactive=False
        )

    app.load(start_app, outputs=[question_display, progress_bar, yes_btn, no_btn, back_btn, result_btn, result_box, restart_btn])

    yes_btn.click(lambda: next_step("Yes"), outputs=[question_display, progress_bar, yes_btn, no_btn, back_btn, result_btn, result_box, restart_btn])
    no_btn.click(lambda: next_step("No"), outputs=[question_display, progress_bar, yes_btn, no_btn, back_btn, result_btn, result_box, restart_btn])
    back_btn.click(go_back, outputs=[question_display, progress_bar, yes_btn, no_btn, back_btn, result_btn, result_box, restart_btn])
    result_btn.click(run_final_analysis, outputs=[question_display, progress_bar, yes_btn, no_btn, back_btn, result_btn, result_box, restart_btn], concurrency_limit=1)
    restart_btn.click(restart_screening, outputs=[question_display, progress_bar, yes_btn, no_btn, back_btn, result_btn, result_box, restart_btn])

app.launch()