Spaces:
Sleeping
Sleeping
File size: 16,600 Bytes
c2cfda7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
import gradio as gr
import warnings
import torch
import os
import whisper
import ssl
import zipfile
from pydub import AudioSegment
from pydub.silence import detect_nonsilent
import subprocess
import tempfile
import time
ssl._create_default_https_context = ssl._create_unverified_context
def process_audio(
audio_paths,
remove_silence=False,
min_silence_len=500,
silence_thresh=-50,
enable_chunking=False,
chunk_duration=600,
ffmpeg_path="ffmpeg",
model_size="large-v3-turbo",
language="de"
):
try:
if not audio_paths:
return "No files selected.", "", None
# Clean up any existing temp directory at the start
temp_dir = "temp_processing"
if os.path.exists(temp_dir):
for file in os.listdir(temp_dir):
file_path = os.path.join(temp_dir, file)
try:
if os.path.isfile(file_path):
os.remove(file_path)
except Exception as e:
print(f"Error cleaning up {file_path}: {e}")
try:
os.rmdir(temp_dir)
except Exception as e:
print(f"Error removing temp directory: {e}")
# Create fresh temp directory with unique timestamp
temp_dir = f"temp_processing_{int(time.time())}"
os.makedirs(temp_dir, exist_ok=True)
processed_files = []
all_results = []
all_segments = []
all_txt_paths = []
try:
# Step 1: Process each audio file
for audio_path in audio_paths:
if not audio_path:
continue
current_file = audio_path
temp_files = []
# Step 1a: Split audio if chunking is enabled
if enable_chunking:
base_name = os.path.splitext(os.path.basename(current_file))[0]
output_pattern = os.path.join(temp_dir, f"{base_name}_part_%d.mp3")
cmd = [
ffmpeg_path, "-i", current_file,
"-f", "segment",
"-segment_time", str(chunk_duration),
"-c:a", "copy",
"-segment_start_number", "1",
output_pattern
]
subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
chunk_files = sorted([os.path.join(temp_dir, f) for f in os.listdir(temp_dir)
if f.startswith(f"{base_name}_part_")])
temp_files.extend(chunk_files)
else:
temp_files.append(current_file)
# Step 1b: Remove silence if requested
if remove_silence:
silence_removed_files = []
for file in temp_files:
audio = AudioSegment.from_file(file)
nonsilent = detect_nonsilent(
audio,
min_silence_len=min_silence_len,
silence_thresh=silence_thresh
)
output = AudioSegment.empty()
for start, end in nonsilent:
output += audio[start:end]
# Save the silence-removed file
silence_removed_path = os.path.join(temp_dir, f"silence_removed_{os.path.basename(file)}")
output.export(silence_removed_path, format="mp3")
silence_removed_files.append(silence_removed_path)
processed_files.extend(silence_removed_files)
else:
processed_files.extend(temp_files)
# Step 2: Transcribe all processed files
print(f"Loading Whisper model '{model_size}'...")
model = whisper.load_model(model_size, device="cpu")
for file in processed_files:
print(f"Transcribing: {file}")
warnings.filterwarnings("ignore", message="FP16 is not supported on CPU; using FP32 instead")
result = model.transcribe(file, fp16=False, language=language, temperature=0.0)
full_text = result["text"]
segments = ""
for segment in result["segments"]:
segments += f"[{segment['start']:.2f} - {segment['end']:.2f}]: {segment['text']}\n"
# Store transcript files in temp directory
txt_path = os.path.join(temp_dir, f"transcript_{os.path.splitext(os.path.basename(file))[0]}.txt")
with open(txt_path, "w", encoding="utf-8") as f:
f.write("=== Full Transcription ===\n\n")
f.write(full_text)
f.write("\n\n=== Segment-wise Transcription ===\n")
f.write(segments)
all_results.append(full_text)
all_segments.append(segments)
all_txt_paths.append(txt_path)
# Create combined transcript file in temp directory
combined_txt_path = os.path.join(temp_dir, "combined_transcripts.txt")
with open(combined_txt_path, "w", encoding="utf-8") as f:
f.write("=== Combined Transcriptions ===\n\n")
for i, (result, segment, path) in enumerate(zip(all_results, all_segments, all_txt_paths)):
filename = os.path.basename(processed_files[i])
f.write(f"File: {filename}\n")
f.write("=== Full Transcription ===\n")
f.write(result)
f.write("\n\n=== Segment-wise Transcription ===\n")
f.write(segment)
f.write("\n" + "-"*50 + "\n\n")
# Format display output
combined_results = "=== File Transcriptions ===\n\n"
combined_segments = "=== File Segments ===\n\n"
for i, (result, segment) in enumerate(zip(all_results, all_segments)):
filename = os.path.basename(processed_files[i])
combined_results += f"File: {filename}\n{result}\n\n"
combined_segments += f"File: {filename}\n{segment}\n\n"
# Create ZIP with all processed files and transcripts
zip_path = f"processed_files_and_transcripts_{int(time.time())}.zip"
cleanup_files = processed_files.copy()
with zipfile.ZipFile(zip_path, 'w') as zipf:
for file in processed_files:
if os.path.exists(file):
zipf.write(file, os.path.basename(file))
for txt_file in all_txt_paths:
if os.path.exists(txt_file):
zipf.write(txt_file)
if os.path.exists(combined_txt_path):
zipf.write(combined_txt_path)
# Cleanup files after ZIP creation
for file in cleanup_files:
if os.path.exists(file):
os.remove(file)
for txt_file in all_txt_paths:
if os.path.exists(txt_file):
os.remove(txt_file)
if os.path.exists(combined_txt_path):
os.remove(combined_txt_path)
# Clean up temp directory
if os.path.exists(temp_dir):
for file in os.listdir(temp_dir):
file_path = os.path.join(temp_dir, file)
if os.path.isfile(file_path):
os.remove(file_path)
os.rmdir(temp_dir)
return combined_results, combined_segments, zip_path
except Exception as inner_e:
print(f"Error during processing: {inner_e}")
raise inner_e
except Exception as e:
print(f"Error in process_audio: {e}")
if 'temp_dir' in locals() and os.path.exists(temp_dir):
try:
for file in os.listdir(temp_dir):
file_path = os.path.join(temp_dir, file)
if os.path.isfile(file_path):
os.remove(file_path)
os.rmdir(temp_dir)
except:
pass
return f"Error: {str(e)}", "", None
def create_interface():
with gr.Blocks(title="Interview Audio Processing App") as app:
gr.Markdown("""
# Audio Processing App
Upload audio files (MP3 or M4A) for processing and transcription.\\
Intended use case: transcription of interviews.
""")
with gr.Row():
with gr.Column():
audio_input = gr.File(
label="Upload Audio Files",
file_count="multiple",
type="filepath"
)
with gr.Group():
gr.Markdown("### Silence Removal Settings")
gr.Markdown(" Default settings are working very well. Silence removal helps to reduce hallucination.")
remove_silence = gr.Checkbox(
label="Remove Silence",
value=False
)
min_silence_len = gr.Slider(
minimum=100,
maximum=2000,
value=500,
step=100,
label="Minimum Silence Length (ms)",
visible=False
)
silence_thresh = gr.Slider(
minimum=-70,
maximum=-30,
value=-50,
step=5,
label="Silence Threshold (dB)",
visible=False
)
with gr.Group():
gr.Markdown("### Chunking Settings")
gr.Markdown(" Chunking reduces the load on the model. 10min chunks work really good.")
enable_chunking = gr.Checkbox(
label="Enable Chunking",
value=False
)
chunk_duration = gr.Slider(
minimum=60,
maximum=3600,
value=600,
step=60,
label="Chunk Duration (seconds)",
visible=False
)
ffmpeg_path = gr.Textbox(
label="FFmpeg Path",
value="ffmpeg",
placeholder="Path to ffmpeg executable",
visible=False
)
with gr.Group():
gr.Markdown("### Transcription Settings")
gr.Markdown(" tiny is the fastest, but the worst quality. Large-v3-turbo is the best, but slower.")
model_size = gr.Dropdown(
choices=["tiny", "base", "small", "medium", "large", "large-v2", "large-v3", "turbo", "large-v3-turbo"],
value="large-v3-turbo",
label="Whisper Model Size"
)
language = gr.Dropdown(
choices=["de", "en", "fr", "es", "it"],
value="de",
label="Language"
)
process_btn = gr.Button("Process", variant="primary")
delete_btn = gr.Button("Delete Everything", variant="stop")
with gr.Column():
full_transcription = gr.Textbox(label="Full Transcription", lines=15)
segmented_transcription = gr.Textbox(label="Segmented Transcription", lines=15)
download_output = gr.File(label="Download Processed Files and Transcripts (ZIP)")
def update_silence_controls(remove_silence):
return {
min_silence_len: gr.update(visible=remove_silence),
silence_thresh: gr.update(visible=remove_silence),
full_transcription: gr.update(value=""),
segmented_transcription: gr.update(value=""),
download_output: gr.update(value=None)
}
def update_chunking_controls(enable_chunking):
return {
chunk_duration: gr.update(visible=enable_chunking),
ffmpeg_path: gr.update(visible=enable_chunking),
full_transcription: gr.update(value=""),
segmented_transcription: gr.update(value=""),
download_output: gr.update(value=None)
}
remove_silence.change(
fn=update_silence_controls,
inputs=[remove_silence],
outputs=[
min_silence_len,
silence_thresh,
full_transcription,
segmented_transcription,
download_output
]
)
enable_chunking.change(
fn=update_chunking_controls,
inputs=[enable_chunking],
outputs=[
chunk_duration,
ffmpeg_path,
full_transcription,
segmented_transcription,
download_output
]
)
process_btn.click(
fn=process_audio,
inputs=[
audio_input,
remove_silence,
min_silence_len,
silence_thresh,
enable_chunking,
chunk_duration,
ffmpeg_path,
model_size,
language,
],
outputs=[
full_transcription,
segmented_transcription,
download_output,
]
)
# Add cleanup function
def cleanup_files():
try:
# Clean up temp directories
temp_dirs = [d for d in os.listdir('.') if d.startswith('temp_processing')]
for temp_dir in temp_dirs:
if os.path.exists(temp_dir):
for file in os.listdir(temp_dir):
file_path = os.path.join(temp_dir, file)
if os.path.isfile(file_path):
os.remove(file_path)
os.rmdir(temp_dir)
# Clean up ZIP files
zip_files = [f for f in os.listdir('.') if f.startswith('processed_files_and_transcripts_')]
for zip_file in zip_files:
if os.path.exists(zip_file):
os.remove(zip_file)
# Clean up transcript files
transcript_files = [f for f in os.listdir('.') if f.startswith('transcript_')]
for transcript_file in transcript_files:
if os.path.exists(transcript_file):
os.remove(transcript_file)
# Return updates for all output fields
return {
full_transcription: gr.update(value="All temporary files have been deleted."),
segmented_transcription: gr.update(value=""),
download_output: gr.update(value=None)
}
except Exception as e:
return {
full_transcription: gr.update(value=f"Error during cleanup: {str(e)}"),
segmented_transcription: gr.update(value=""),
download_output: gr.update(value=None)
}
# Update the delete button click handler
delete_btn.click(
fn=cleanup_files,
inputs=[],
outputs=[
full_transcription,
segmented_transcription,
download_output
]
)
return app
if __name__ == "__main__":
app = create_interface()
app.launch(share=False) |