import gradio as gr title = "BART" description = "Gradio Demo for BART, to use it, simply add your text, or click one of the examples to load them. Read more at the links below." article = "

BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension

" examples = [ ["I have a problem with my iphone that needs to be resolved asap!!","bart-large-mnli","urgent, not urgent, phone, tablet, computer",False] ] io1 = gr.Interface.load("huggingface/facebook/bart-large-mnli") io2 = gr.Interface.load("huggingface/facebook/bart-large-cnn") def inference(text, model,class_names,allow_multiple): if model == "bart-large-mnli": outlabel = io1(text,class_names,allow_multiple) outtext = "" else: outtext = io2(text) outlabel = {} return outlabel, outtext gr.Interface( inference, [gr.inputs.Textbox(label="Input",lines=10),gr.inputs.Dropdown(choices=["bart-large-mnli","bart-large-cnn"], type="value", default="bart-large-mnli", label="model"),gr.inputs.Textbox(label="Possible class names (comma-separated)"),gr.inputs.Checkbox(default=False, label="Allow multiple true classes")], ["label","textbox"], examples=examples, article=article, title=title, description=description).launch(enable_queue=True, cache_examples=True)