Spaces:
Running
Running
File size: 1,427 Bytes
ab85ade bce1cb7 8060ec0 4e73c43 c2e0ca1 3e7211e 8060ec0 4e73c43 8060ec0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
---
title: README
emoji: 🏢
colorFrom: gray
colorTo: green
sdk: static
pinned: false
---
<div align="center">
<img src="https://huggingface.co./spaces/diffusion-cot/README/resolve/main/208273488.png"/ width=400>
</div>
This organization holds the artifacts for our research conducted on enabling reasoning in diffusion-based image synthesis models. Our first
effort in this line of research is **ReflectionFlow**, where we introduce the first ever large-scale dataset, **GenRef**, suitable for
reflection-tuning.
Below, we provide the links related to ReflectionFlow:
* [ReflectionFlow paper](https://arxiv.org/abs/2504.16080)
* [Projection website](https://diffusion-cot.github.io/reflection2perfection/)
* [Models and datasets](https://huggingface.co./collections/diffusion-cot/reflectionflow-release-6803e14352b1b13a16aeda44)
* [Code](https://github.com/Diffusion-CoT/ReflectionFlow)
Citation
```bibtex
misc{zhuo2025reflectionperfectionscalinginferencetime,
title={From Reflection to Perfection: Scaling Inference-Time Optimization for Text-to-Image Diffusion Models via Reflection Tuning},
author={Le Zhuo and Liangbing Zhao and Sayak Paul and Yue Liao and Renrui Zhang and Yi Xin and Peng Gao and Mohamed Elhoseiny and Hongsheng Li},
year={2025},
eprint={2504.16080},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2504.16080},
}
```
Enjoy 🤗 |