Spaces:
Running
Running
File size: 3,098 Bytes
c23c7fd 4b87ee5 c0a3229 c23c7fd c3b53de c2d61c7 c23c7fd 71a36a2 aa45a03 c23c7fd ccf784a c23c7fd c7d91ee c23c7fd ac94852 c23c7fd ac94852 66ca485 ac94852 c23c7fd 66ca485 ac94852 c23c7fd f1fb568 c23c7fd c2d61c7 434ea14 c23c7fd c2d61c7 b6b5a2d c2d61c7 5dbe1e7 4af7d1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
import streamlit as st
import torch
from transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification
from safetensors.torch import load_file as safe_load
target_to_ind = {'cs': 0, 'econ': 1, 'eess': 2, 'math': 3, 'phys': 4, 'q-bio': 5, 'q-fin': 6, 'stat': 7}
target_to_label = {'cs': 'Computer Science', 'econ': 'Economics', 'eess': 'Electrical Engineering and Systems Science', 'math': 'Mathematics', 'phys': 'Physics',
'q-bio': 'Quantitative Biology', 'q-fin': 'Quantitative Finance', 'stat': 'Statistics'}
ind_to_target = {ind: target for target, ind in target_to_ind.items()}

st.title('papers_classifier - your best friend in 🤓')
st.text('You need to give me paper's title and (if you want to) it's abstract. Also you need to choose classification mode - there are 2 of them:\
best prediction and top 95% which means that you'll see as many classes as model needs to show to be confident with probability at least 0.95 that the correct one is among them. \
After that you need to press the Get prediction button and I'll tell you to which fields of study this paper is related. \
According to arXiv there are 8 different fields - Computer Science, Economics, Electrical Engineering and Systems Science, Mathematics, Physics, Quantitative Biology, \
Quantitative Finance and Statistics.\
')
@st.cache_resource
def load_model_and_tokenizer():
model_name = 'distilbert/distilbert-base-cased'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=len(target_to_ind))
state_dict = safe_load("model.safetensors")
model.load_state_dict(state_dict)
return model, tokenizer
model, tokenizer = load_model_and_tokenizer()
def get_predict(title: str, abstract: str) -> (str, float, dict):
text = [title + tokenizer.sep_token + abstract[:128]]
tokens_info = tokenizer(
text,
padding=True,
truncation=True,
return_tensors="pt",
)
with torch.no_grad():
out = model(**tokens_info)
probs = torch.nn.functional.softmax(out.logits, dim=-1).tolist()[0]
return list(sorted([(p, ind_to_target[i]) for i, p in enumerate(probs)]))[::-1]
title = st.text_area("Title ", "", height=100)
abstract = st.text_area("Abstract ", "", height=150)
mode = st.radio("Mode: ", ("Best prediction", "Top 95%"))
if st.button("Get prediction", key="manual"):
if len(title) == 0:
st.error("Please, provide paper's title")
else:
with st.spinner("Be patient, I'm doing my best"):
predict = get_predict(title, abstract)
tags = []
threshold = 0 if mode == "Best prediction" else 0.95
sum_p = 0
for p, tag in predict:
sum_p += p
tags.append(target_to_label[tag])
if sum_p >= threshold:
break
tags = '\n'.join(tags)
st.success(tags)
|