File size: 2,260 Bytes
c23c7fd
 
4b87ee5
c0a3229
c23c7fd
c3b53de
c2d61c7
 
c23c7fd
 
71a36a2
c23c7fd
 
 
 
ccf784a
 
 
 
c23c7fd
 
 
 
c7d91ee
 
 
c23c7fd
ac94852
c23c7fd
ac94852
 
 
 
 
66ca485
ac94852
c23c7fd
66ca485
ac94852
c23c7fd
f1fb568
c23c7fd
 
 
 
 
c2d61c7
 
 
 
434ea14
c23c7fd
 
 
 
c2d61c7
 
 
 
 
 
 
 
 
 
5dbe1e7
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import streamlit as st
import torch
from transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification
from safetensors.torch import load_file as safe_load

target_to_ind = {'cs': 0, 'econ': 1, 'eess': 2, 'math': 3, 'phys': 4, 'q-bio': 5, 'q-fin': 6, 'stat': 7}
target_to_label = {'cs': 'Computer Science', 'econ': 'Economics', 'eess': 'Electrical Engineering and Systems Science', 'math': 'Mathematics', 'phys': 'Physics', 
                  'q-bio': 'Quantitative Biology', 'q-fin': 'Quantitative Finance', 'stat': 'Statistics'}
ind_to_target = {ind: target for target, ind in target_to_ind.items()}


@st.cache_resource
def load_model_and_tokenizer():
    model_name = 'distilbert/distilbert-base-cased'
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=len(target_to_ind))
    
    state_dict = safe_load("model.safetensors")
    model.load_state_dict(state_dict)
    
    return model, tokenizer


model, tokenizer = load_model_and_tokenizer()


def get_predict(title: str, abstract: str) -> (str, float, dict):
    text = [title + tokenizer.sep_token + abstract[:128]]

    tokens_info = tokenizer(
        text,
        padding=True,
        truncation=True,
        return_tensors="pt",
    )
    
    with torch.no_grad():
        out = model(**tokens_info)
        probs = torch.nn.functional.softmax(out.logits, dim=-1).tolist()[0]

        return list(sorted([(p, ind_to_target[i]) for i, p in enumerate(probs)]))[::-1]


title = st.text_area("Title ", "", height=100)
abstract = st.text_area("Abstract ", "", height=150)


mode = st.radio("Mode: ", ("Best prediction", "Top 95%"))

if st.button("Get prediction", key="manual"):
    if len(title) == 0:
        st.error("Please, provide paper's title")
    else:
        with st.spinner("Be patient, I'm doing my best"):
            predict = get_predict(title, abstract)

        tags = []
        threshold = 0 if status == "Best prediction" else 0.95
        sum_p = 0
        for p, tag in predict:
            sum_p += p
            tags.append(target_to_label[tag])

            if sum_p >= threshold:
                break
        tags = '\n'.join(tags)
        st.succes(tags)