dezzman's picture
Update app.py
d52ef02 verified
raw
history blame
7.87 kB
import gradio as gr
import numpy as np
import random
import os
# import spaces #[uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline, StableDiffusionPipeline
from peft import PeftModel, LoraConfig
import torch
from typing import Optional
def get_lora_sd_pipeline(
ckpt_dir='./lora_logos',
base_model_name_or_path=None,
dtype=torch.float16,
adapter_name="default"
):
unet_sub_dir = os.path.join(ckpt_dir, "unet")
text_encoder_sub_dir = os.path.join(ckpt_dir, "text_encoder")
if os.path.exists(text_encoder_sub_dir) and base_model_name_or_path is None:
config = LoraConfig.from_pretrained(text_encoder_sub_dir)
base_model_name_or_path = config.base_model_name_or_path
if base_model_name_or_path is None:
raise ValueError("Please specify the base model name or path")
pipe = StableDiffusionPipeline.from_pretrained(base_model_name_or_path, torch_dtype=dtype)
pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name)
if os.path.exists(text_encoder_sub_dir):
pipe.text_encoder = PeftModel.from_pretrained(
pipe.text_encoder, text_encoder_sub_dir, adapter_name=adapter_name
)
if dtype in (torch.float16, torch.bfloat16):
pipe.unet.half()
pipe.text_encoder.half()
return pipe
def split_prompt(prompt, tokenizer, max_length=77):
tokens = tokenizer(prompt, truncation=False)["input_ids"]
chunks = [tokens[i:i + max_length] for i in range(0, len(tokens), max_length)]
return chunks
def get_prompt_embeds(prompt_chunks, text_encoder):
prompt_embeds = []
for chunk in prompt_chunks:
chunk_tensor = torch.tensor([chunk]).to(text_encoder.device)
with torch.no_grad():
embeds = text_encoder(chunk_tensor)[0]
prompt_embeds.append(embeds)
return torch.cat(prompt_embeds, dim=1)
def shape_alignment(prompt_embeds, negative_prompt_embeds):
max_length = max(prompt_embeds.shape[1], negative_prompt_embeds.shape[1])
def pad_to_max_length(tensor, target_length):
padding = target_length - tensor.shape[1]
if padding > 0:
pad_tensor = torch.zeros(
tensor.shape[0], padding, tensor.shape[2], device=tensor.device
)
tensor = torch.cat([tensor, pad_tensor], dim=1)
return tensor
prompt_embeds = pad_to_max_length(prompt_embeds, max_length)
negative_prompt_embeds = pad_to_max_length(negative_prompt_embeds, max_length)
assert prompt_embeds.shape == negative_prompt_embeds.shape, "Shapes do not match!"
return prompt_embeds, negative_prompt_embeds
def prompts_embeddings(prompt, negative_promt, tokenizer, text_encoder):
prompt_chunks = split_prompt(prompt, tokenizer)
negative_prompt_chunks = split_prompt(negative_prompt, tokenizer)
prompt_embeds = get_prompt_embeds(prompt_chunks, text_encoder)
negative_prompt_embeds = get_prompt_embeds(negative_prompt_chunks, text_encoder)
prompt_embeds, negative_prompt_embeds = shape_alignment(prompt_embeds, negative_prompt_embeds)
return prompt_embeds, negative_prompt_embeds
device = "cuda" if torch.cuda.is_available() else "cpu"
model_id_default = "CompVis/stable-diffusion-v1-4"
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
pipe_default = get_lora_sd_pipeline(
ckpt_dir='./lora_logos',
base_model_name_or_path=model_id_default,
dtype=torch_dtype,
)
# pipe_default = DiffusionPipeline.from_pretrained(model_id_default, torch_dtype=torch_dtype)
pipe_default = pipe_default.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
prompt: str,
negative_prompt: str,
width: int,
height: int,
num_inference_steps: Optional[int] = 20,
model_id: Optional[str] = 'CompVis/stable-diffusion-v1-4',
seed: Optional[int] = 42,
guidance_scale: Optional[float] = 7.0,
lora_scale: Optional[float] = 0.5,
progress=gr.Progress(track_tqdm=True),
):
generator = torch.Generator().manual_seed(seed)
params = {
# 'prompt': prompt,
# 'negative_prompt': negative_prompt,
'guidance_scale': guidance_scale,
'num_inference_steps': num_inference_steps,
'width': width,
'height': height,
'generator': generator,
}
if model_id != model_id_default:
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)
image = pipe(**params).images[0]
else:
prompt_embeds, negative_prompt_embeds = prompts_embeddings(
prompt,
negative_prompt,
pipe_default.tokenizer,
pipe_default.text_encoder
)
params['prompt_embeds'] = prompt_embeds
params['negative_prompt_embeds']=negative_prompt_embeds
pipe_default.fuse_lora(lora_scale=lora_scale)
image = pipe_default(**params).images[0]
return image
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # DEMO Text-to-Image")
with gr.Row():
model_id = gr.Textbox(
label="Model ID",
max_lines=1,
placeholder="Enter model id like 'CompVis/stable-diffusion-v1-4'",
value="CompVis/stable-diffusion-v1-4"
)
prompt = gr.Textbox(
label="Prompt",
max_lines=1,
placeholder="Enter your prompt",
)
negative_prompt = gr.Textbox(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
)
with gr.Row():
seed = gr.Number(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=7.0,
)
with gr.Row():
lora_scale = gr.Slider(
label="LoRA scale",
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.5,
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=20,
)
with gr.Accordion("Optional Settings", open=False):
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
with gr.Row():
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
run_button = gr.Button("Run", scale=1, variant="primary")
result = gr.Image(label="Result", show_label=False)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
width,
height,
num_inference_steps,
model_id,
seed,
guidance_scale,
lora_scale,
],
outputs=[result],
)
if __name__ == "__main__":
demo.launch()