flux-quant / app.py
derekl35's picture
derekl35 HF Staff
Update app.py
e70b261 verified
import torch
import gradio as gr
from diffusers import FluxPipeline, FluxTransformer2DModel
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig
from transformers import T5EncoderModel
from transformers import BitsAndBytesConfig as TransformersBitsAndBytesConfig
import gc
import random
from PIL import Image
import os
import time
import spaces
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {DEVICE}")
DEFAULT_HEIGHT = 1024
DEFAULT_WIDTH = 1024
DEFAULT_GUIDANCE_SCALE = 3.5
DEFAULT_NUM_INFERENCE_STEPS = 15
DEFAULT_MAX_SEQUENCE_LENGTH = 512
GENERATION_SEED = 0 # could use a random number generator to set this, for more variety
HF_TOKEN = os.environ.get("HF_ACCESS_TOKEN")
def clear_gpu_memory(*args):
allocated_before = torch.cuda.memory_allocated(0) / 1024**3 if DEVICE == "cuda" else 0
reserved_before = torch.cuda.memory_reserved(0) / 1024**3 if DEVICE == "cuda" else 0
print(f"Before clearing: Allocated={allocated_before:.2f} GB, Reserved={reserved_before:.2f} GB")
deleted_types = []
for arg in args:
if arg is not None:
deleted_types.append(str(type(arg)))
del arg
if deleted_types:
print(f"Deleted objects of types: {', '.join(deleted_types)}")
else:
print("No objects passed to clear_gpu_memory.")
gc.collect()
if DEVICE == "cuda":
torch.cuda.empty_cache()
allocated_after = torch.cuda.memory_allocated(0) / 1024**3 if DEVICE == "cuda" else 0
reserved_after = torch.cuda.memory_reserved(0) / 1024**3 if DEVICE == "cuda" else 0
print(f"After clearing: Allocated={allocated_after:.2f} GB, Reserved={reserved_after:.2f} GB")
print("-" * 20)
CACHED_PIPES = {}
def load_bf16_pipeline():
"""Loads the original FLUX.1-dev pipeline in BF16 precision."""
print("Loading BF16 pipeline...")
MODEL_ID = "black-forest-labs/FLUX.1-dev"
if MODEL_ID in CACHED_PIPES:
return CACHED_PIPES[MODEL_ID]
start_time = time.time()
try:
pipe = FluxPipeline.from_pretrained(
MODEL_ID,
torch_dtype=torch.bfloat16,
token=HF_TOKEN
)
pipe.to(DEVICE)
# pipe.enable_model_cpu_offload()
end_time = time.time()
mem_reserved = torch.cuda.memory_reserved(0)/1024**3 if DEVICE == "cuda" else 0
print(f"BF16 Pipeline loaded in {end_time - start_time:.2f}s. Memory reserved: {mem_reserved:.2f} GB")
CACHED_PIPES[MODEL_ID] = pipe
return pipe
except Exception as e:
print(f"Error loading BF16 pipeline: {e}")
raise # Re-raise exception to be caught in generate_images
def load_bnb_8bit_pipeline():
"""Loads the FLUX.1-dev pipeline with 8-bit quantized components."""
print("Loading 8-bit BNB pipeline...")
MODEL_ID = "derekl35/FLUX.1-dev-bnb-8bit"
if MODEL_ID in CACHED_PIPES:
return CACHED_PIPES[MODEL_ID]
start_time = time.time()
try:
pipe = FluxPipeline.from_pretrained(
MODEL_ID,
torch_dtype=torch.bfloat16
)
pipe.to(DEVICE)
# pipe.enable_model_cpu_offload()
end_time = time.time()
mem_reserved = torch.cuda.memory_reserved(0)/1024**3 if DEVICE == "cuda" else 0
print(f"8-bit BNB pipeline loaded in {end_time - start_time:.2f}s. Memory reserved: {mem_reserved:.2f} GB")
CACHED_PIPES[MODEL_ID] = pipe
return pipe
except Exception as e:
print(f"Error loading 8-bit BNB pipeline: {e}")
raise
def load_bnb_4bit_pipeline():
"""Loads the FLUX.1-dev pipeline with 4-bit quantized components."""
print("Loading 4-bit BNB pipeline...")
MODEL_ID = "derekl35/FLUX.1-dev-nf4"
if MODEL_ID in CACHED_PIPES:
return CACHED_PIPES[MODEL_ID]
start_time = time.time()
try:
pipe = FluxPipeline.from_pretrained(
MODEL_ID,
torch_dtype=torch.bfloat16
)
pipe.to(DEVICE)
# pipe.enable_model_cpu_offload()
end_time = time.time()
mem_reserved = torch.cuda.memory_reserved(0)/1024**3 if DEVICE == "cuda" else 0
print(f"4-bit BNB pipeline loaded in {end_time - start_time:.2f}s. Memory reserved: {mem_reserved:.2f} GB")
CACHED_PIPES[MODEL_ID] = pipe
return pipe
except Exception as e:
print(f"4-bit BNB pipeline: {e}")
raise
@spaces.GPU(duration=240)
def generate_images(prompt, quantization_choice, progress=gr.Progress(track_tqdm=True)):
"""Loads original and selected quantized model, generates one image each, clears memory, shuffles results."""
if not prompt:
return None, {}, gr.update(value="Please enter a prompt.", interactive=False), gr.update(choices=[], value=None)
if not quantization_choice:
# Return updates for all outputs to clear them or show warning
return None, {}, gr.update(value="Please select a quantization method.", interactive=False), gr.update(choices=[], value=None)
# Determine which quantized model to load
if quantization_choice == "8-bit":
quantized_load_func = load_bnb_8bit_pipeline
quantized_label = "Quantized (8-bit)"
elif quantization_choice == "4-bit":
quantized_load_func = load_bnb_4bit_pipeline
quantized_label = "Quantized (4-bit)"
else:
# Should not happen with Radio choices, but good practice
return None, {}, gr.update(value="Invalid quantization choice.", interactive=False), gr.update(choices=[], value=None)
model_configs = [
("Original", load_bf16_pipeline),
(quantized_label, quantized_load_func), # Use the specific label here
]
results = []
pipe_kwargs = {
"prompt": prompt,
"height": DEFAULT_HEIGHT,
"width": DEFAULT_WIDTH,
"guidance_scale": DEFAULT_GUIDANCE_SCALE,
"num_inference_steps": DEFAULT_NUM_INFERENCE_STEPS,
"max_sequence_length": DEFAULT_MAX_SEQUENCE_LENGTH,
}
current_pipe = None # Keep track of the current pipe for cleanup
for i, (label, load_func) in enumerate(model_configs):
progress(i / len(model_configs), desc=f"Loading {label} model...")
print(f"\n--- Loading {label} Model ---")
load_start_time = time.time()
try:
# Ensure previous pipe is cleared *before* loading the next
# if current_pipe:
# print(f"--- Clearing memory before loading {label} Model ---")
# clear_gpu_memory(current_pipe)
# current_pipe = None
current_pipe = load_func()
load_end_time = time.time()
print(f"{label} model loaded in {load_end_time - load_start_time:.2f} seconds.")
progress((i + 0.5) / len(model_configs), desc=f"Generating with {label} model...")
print(f"--- Generating with {label} Model ---")
gen_start_time = time.time()
image_list = current_pipe(**pipe_kwargs, generator=torch.manual_seed(GENERATION_SEED)).images
image = image_list[0]
gen_end_time = time.time()
results.append({"label": label, "image": image})
print(f"--- Finished Generation with {label} Model in {gen_end_time - gen_start_time:.2f} seconds ---")
mem_reserved = torch.cuda.memory_reserved(0)/1024**3 if DEVICE == "cuda" else 0
print(f"Memory reserved: {mem_reserved:.2f} GB")
except Exception as e:
print(f"Error during {label} model processing: {e}")
# Attempt cleanup
if current_pipe:
print(f"--- Clearing memory after error with {label} Model ---")
clear_gpu_memory(current_pipe)
current_pipe = None
# Return error state to Gradio - update all outputs
return None, {}, gr.update(value=f"Error processing {label} model: {e}", interactive=False), gr.update(choices=[], value=None)
# No finally block needed here, cleanup happens before next load or after loop
# Final cleanup after the loop finishes successfully
# if current_pipe:
# print(f"--- Clearing memory after last model ({label}) ---")
# clear_gpu_memory(current_pipe)
# current_pipe = None
if len(results) != len(model_configs):
print("Generation did not complete for all models.")
# Update all outputs
return None, {}, gr.update(value="Failed to generate images for all model types.", interactive=False), gr.update(choices=[], value=None)
# Shuffle the results for display
shuffled_results = results.copy()
random.shuffle(shuffled_results)
# Create the gallery data: [(image, caption), (image, caption)]
shuffled_data_for_gallery = [(res["image"], f"Image {i+1}") for i, res in enumerate(shuffled_results)]
# Create the mapping: display_index -> correct_label (e.g., {0: 'Original', 1: 'Quantized (8-bit)'})
correct_mapping = {i: res["label"] for i, res in enumerate(shuffled_results)}
print("Correct mapping (hidden):", correct_mapping)
guess_radio_update = gr.update(choices=["Image 1", "Image 2"], value=None, interactive=True)
# Return shuffled images, the correct mapping state, status message, and update the guess radio
return shuffled_data_for_gallery, correct_mapping, gr.update(value="Generation complete! Make your guess.", interactive=False), guess_radio_update
# --- Guess Verification Function ---
def check_guess(user_guess, correct_mapping_state):
"""Compares the user's guess with the correct mapping stored in the state."""
if not isinstance(correct_mapping_state, dict) or not correct_mapping_state:
return "Please generate images first (state is empty or invalid)."
if user_guess is None:
return "Please select which image you think is quantized."
# Find which display index (0 or 1) corresponds to the quantized image
quantized_image_index = -1
quantized_label_actual = ""
for index, label in correct_mapping_state.items():
if "Quantized" in label: # Check if the label indicates quantization
quantized_image_index = index
quantized_label_actual = label # Store the full label e.g. "Quantized (8-bit)"
break
if quantized_image_index == -1:
# This shouldn't happen if generation was successful
return "Error: Could not find the quantized image in the mapping data."
# Determine what the user *should* have selected based on the index
correct_guess_label = f"Image {quantized_image_index + 1}" # "Image 1" or "Image 2"
if user_guess == correct_guess_label:
feedback = f"Correct! {correct_guess_label} used the {quantized_label_actual} model."
else:
feedback = f"Incorrect. The quantized image ({quantized_label_actual}) was {correct_guess_label}."
return feedback
with gr.Blocks(title="FLUX Quantization Challenge", theme=gr.themes.Soft()) as demo:
gr.Markdown("# FLUX Model Quantization Challenge")
gr.Markdown(
"Compare the original FLUX.1-dev (BF16) model against a quantized version (4-bit or 8-bit). "
"Enter a prompt, choose the quantization method, and generate two images. "
"The images will be shuffled. Can you guess which one used quantization?"
)
with gr.Row():
prompt_input = gr.Textbox(label="Enter Prompt", placeholder="e.g., A photorealistic portrait of an astronaut on Mars", scale=3)
quantization_choice_radio = gr.Radio(
choices=["8-bit", "4-bit"],
label="Select Quantization",
value="8-bit", # Default choice
scale=1
)
generate_button = gr.Button("Generate & Compare", variant="primary", scale=1)
output_gallery = gr.Gallery(
label="Generated Images (Original vs. Quantized)",
columns=2,
height=512,
object_fit="contain",
allow_preview=True,
show_label=True, # Shows "Image 1", "Image 2" captions we provide
)
gr.Markdown("### Which image used the selected quantization method?")
with gr.Row():
# Centered guess radio and submit button
with gr.Column(scale=1): # Dummy column for spacing
pass
with gr.Column(scale=2): # Column for the radio button
guess_radio = gr.Radio(
choices=[],
label="Your Guess",
info="Select the image you believe was generated with the quantized model.",
interactive=False # Disabled until images are generated
)
with gr.Column(scale=1): # Column for the button
submit_guess_button = gr.Button("Submit Guess")
with gr.Column(scale=1): # Dummy column for spacing
pass
feedback_box = gr.Textbox(label="Feedback", interactive=False, lines=1)
# Hidden state to store the correct mapping after shuffling
# e.g., {0: 'Original', 1: 'Quantized (8-bit)'} or {0: 'Quantized (4-bit)', 1: 'Original'}
correct_mapping_state = gr.State({})
generate_button.click(
fn=generate_images,
inputs=[prompt_input, quantization_choice_radio],
outputs=[output_gallery, correct_mapping_state, feedback_box, guess_radio]
).then(
lambda: "", # Clear feedback box on new generation
outputs=[feedback_box]
)
submit_guess_button.click(
fn=check_guess,
inputs=[guess_radio, correct_mapping_state], # Pass the selected guess and the state
outputs=[feedback_box]
)
if __name__ == "__main__":
# queue()
# demo.queue().launch() # Set share=True to create public link if needed
demo.launch()