File size: 1,311 Bytes
c43f521
c9c2cca
28ffd84
c43f521
 
28ffd84
 
c9c2cca
 
 
 
c43f521
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21961eb
c43f521
 
 
 
c9c2cca
c43f521
 
c9c2cca
 
c43f521
 
 
 
 
 
c9c2cca
c43f521
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import gradio
from fastai.vision.all import *


def gradioeet(name):
    return "Hello " + name + "!!"


def is_cat(x): return x[0].isupper()


# path = untar_data(URLs.DOGS) / 'images'
# dls = ImageDataLoaders.from_name_func('.',
#                                       get_image_files(path), valid_pct=0.2, seed=42,
#                                       label_func=is_cat,
#                                       item_tfms=Resize(192))
#
# dls.valid.show_batch(max_n=4, nrows=1)
#

#
# learn = vision_learner(dls, resnet18, metrics=error_rate)
# learn.fine_tune(3)

# interp = ClassificationInterpretation.from_learner(learn)
# interp.plot_confusion_matrix()
#
# learn.export('model2.pkl')


learn = load_learner("model_last2.pkl")

categories = {"No_Cat", "Cat"}


def classify_image(img):
    pred, idx, probs = learn.predict(img)
    return dict(zip(categories, map(float, probs)))


image = gradio.Image(height=192, width=192)
label = gradio.Label()
examples = ["[email protected]", "[email protected]", "[email protected]",
            "[email protected]"]
intf = gradio.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)
intf.launch(inline=False)

# demo = gradio.Interface(fn=gradioeet, inputs="text", outputs="text")
# demo.launch(inline=False)