File size: 8,389 Bytes
def2fd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. All rights reserved.
# Copyright (c) 2024 Black Forest Labs and The XLabs-AI Team. All rights reserved.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from dataclasses import dataclass

import torch
from torch import Tensor, nn

from .modules.layers import DoubleStreamBlock, EmbedND, LastLayer, MLPEmbedder, SingleStreamBlock, timestep_embedding


@dataclass
class FluxParams:
    in_channels: int
    vec_in_dim: int
    context_in_dim: int
    hidden_size: int
    mlp_ratio: float
    num_heads: int
    depth: int
    depth_single_blocks: int
    axes_dim: list[int]
    theta: int
    qkv_bias: bool
    guidance_embed: bool


class Flux(nn.Module):
    """
    Transformer model for flow matching on sequences.
    """
    _supports_gradient_checkpointing = True

    def __init__(self, params: FluxParams):
        super().__init__()

        self.params = params
        self.in_channels = params.in_channels
        self.out_channels = self.in_channels
        if params.hidden_size % params.num_heads != 0:
            raise ValueError(
                f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
            )
        pe_dim = params.hidden_size // params.num_heads
        if sum(params.axes_dim) != pe_dim:
            raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
        self.hidden_size = params.hidden_size
        self.num_heads = params.num_heads
        self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
        self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)
        self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
        self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size)
        self.guidance_in = (
            MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if params.guidance_embed else nn.Identity()
        )
        self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size)

        self.double_blocks = nn.ModuleList(
            [
                DoubleStreamBlock(
                    self.hidden_size,
                    self.num_heads,
                    mlp_ratio=params.mlp_ratio,
                    qkv_bias=params.qkv_bias,
                )
                for _ in range(params.depth)
            ]
        )

        self.single_blocks = nn.ModuleList(
            [
                SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio)
                for _ in range(params.depth_single_blocks)
            ]
        )

        self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels)
        self.gradient_checkpointing = False

    def _set_gradient_checkpointing(self, module, value=False):
        if hasattr(module, "gradient_checkpointing"):
            module.gradient_checkpointing = value

    @property
    def attn_processors(self):
        # set recursively
        processors = {}  # type: dict[str, nn.Module]

        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors):
            if hasattr(module, "set_processor"):
                processors[f"{name}.processor"] = module.processor

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

    def set_attn_processor(self, processor):
        r"""
        Sets the attention processor to use to compute attention.

        Parameters:
            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
                for **all** `Attention` layers.

                If `processor` is a dict, the key needs to define the path to the corresponding cross attention
                processor. This is strongly recommended when setting trainable attention processors.

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
            if hasattr(module, "set_processor"):
                if not isinstance(processor, dict):
                    module.set_processor(processor)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"))

            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)

    def forward(
        self,
        img: Tensor,
        img_ids: Tensor,
        txt: Tensor,
        txt_ids: Tensor,
        timesteps: Tensor,
        y: Tensor,
        guidance: Tensor | None = None,
        ref_img: Tensor | None = None, 
        ref_img_ids: Tensor | None = None, 
    ) -> Tensor:
        if img.ndim != 3 or txt.ndim != 3:
            raise ValueError("Input img and txt tensors must have 3 dimensions.")

        # running on sequences img
        img = self.img_in(img)
        vec = self.time_in(timestep_embedding(timesteps, 256))
        if self.params.guidance_embed:
            if guidance is None:
                raise ValueError("Didn't get guidance strength for guidance distilled model.")
            vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
        vec = vec + self.vector_in(y)
        txt = self.txt_in(txt)

        ids = torch.cat((txt_ids, img_ids), dim=1)

        # concat ref_img/img
        img_end = img.shape[1]
        if ref_img is not None:
            if isinstance(ref_img, tuple) or isinstance(ref_img, list):
                img_in = [img] + [self.img_in(ref) for ref in ref_img]
                img_ids = [ids] + [ref_ids for ref_ids in ref_img_ids]
                img = torch.cat(img_in, dim=1)  
                ids = torch.cat(img_ids, dim=1)
            else:
                img = torch.cat((img, self.img_in(ref_img)), dim=1)  
                ids = torch.cat((ids, ref_img_ids), dim=1)
        pe = self.pe_embedder(ids)
        
        for index_block, block in enumerate(self.double_blocks):
            if self.training and self.gradient_checkpointing:
                img, txt = torch.utils.checkpoint.checkpoint(
                    block,
                    img=img, 
                    txt=txt, 
                    vec=vec, 
                    pe=pe, 
                    use_reentrant=False,
                )
            else:
                img, txt = block(
                    img=img, 
                    txt=txt, 
                    vec=vec, 
                    pe=pe
                )

        img = torch.cat((txt, img), 1)
        for block in self.single_blocks:
            if self.training and self.gradient_checkpointing:
                img = torch.utils.checkpoint.checkpoint(
                    block,
                    img, vec=vec, pe=pe,
                    use_reentrant=False
                )
            else:
                img = block(img, vec=vec, pe=pe)
        img = img[:, txt.shape[1] :, ...]
        # index img
        img = img[:, :img_end, ...]

        img = self.final_layer(img, vec)  # (N, T, patch_size ** 2 * out_channels)
        return img