Spaces:
Sleeping
Sleeping
File size: 8,527 Bytes
cfbd02f c02076c cfbd02f c02076c cfbd02f 8e5d803 cfbd02f 96e2e87 cfbd02f 96e2e87 cfbd02f 96e2e87 cfbd02f 96e2e87 cfbd02f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Solutions Guide"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import pandas as pd\n",
"\n",
"# PySpark imports\n",
"from pyspark.sql import SparkSession\n",
"from pyspark.sql import functions as F\n",
"from pyspark.sql.types import *\n",
"\n",
"# Create or get Spark session\n",
"spark = SparkSession.builder \\\n",
" .appName(\"TitanicAssessmentExtended\") \\\n",
" .getOrCreate()\n",
"\n",
"print(\"Spark version:\", spark.version)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Explanation:\n",
"\n",
" We import pandas, pyspark.sql modules, and create a Spark session named \"TitanicAssessmentExtended\".\n",
" Checking spark.version helps confirm which version of Spark is running."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Read in data \n",
"titanic_csv_path = os.path.join(\"..\", \"data\", \"titanic.csv\")\n",
"\n",
"# 2.1 Read into a Pandas DataFrame\n",
"pd_df = pd.read_csv(titanic_csv_path)\n",
"\n",
"print(\"pd_df shape:\", pd_df.shape)\n",
"display(pd_df.head())\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We use pd.read_csv(...) to read the Titanic data into a pd.DataFrame.\n",
".shape gives the (rows, columns).\n",
".head() shows the top few rows."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# 2.2 Read into a Spark DataFrame\n",
"spark_df = spark.read.csv(titanic_csv_path, header=True, inferSchema=True)\n",
"\n",
"spark_df.printSchema()\n",
"print(\"spark_df count:\", spark_df.count())\n",
"spark_df.show(5)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We specify header=True so Spark knows the first row is column headers, and inferSchema=True so it automatically detects column types.\n",
".printSchema() reveals the inferred schema.\n",
".count() and .show() let us see row counts and sample rows."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Split data into subsets\n",
"\n",
"pd_part1 = pd_df[[\"PassengerId\", \"Name\", \"Sex\", \"Age\"]]\n",
"pd_part2 = pd_df[[\"PassengerId\", \"Fare\", \"Survived\", \"Pclass\"]]\n",
"\n",
"display(pd_part1.head())\n",
"display(pd_part2.head())\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"spark_part1 = spark_df.select(\"PassengerId\", \"Name\", \"Sex\", \"Age\")\n",
"spark_part2 = spark_df.select(\"PassengerId\", \"Fare\", \"Survived\", \"Pclass\")\n",
"\n",
"spark_part1.show(5)\n",
"spark_part2.show(5)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Merging/Joining split dataframes \n",
"\n",
"pd_merged = pd_part1.merge(pd_part2, on=\"PassengerId\", how=\"inner\")\n",
"print(\"pd_merged shape:\", pd_merged.shape)\n",
"display(pd_merged.head())\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"on=\"PassengerId\" merges the two tables by the PassengerId key.\n",
"how=\"inner\" ensures rows only appear if they exist in both subsets (should be all matching in this case)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Join in spark\n",
"\n",
"spark_merged = spark_part1.join(spark_part2, on=\"PassengerId\", how=\"inner\")\n",
"print(\"spark_merged count:\", spark_merged.count())\n",
"spark_merged.show(5)\n",
"spark_merged.printSchema()\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Spark uses .join(df2, on=\"PassengerId\", how=\"inner\").\n",
"spark_merged.show(5) and .printSchema() confirm the merge result."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Data cleaning\n",
"\n",
"pd_merged_clean = pd_merged.dropna(subset=[\"Age\", \"Fare\"])\n",
"print(\"Before dropna:\", pd_merged.shape)\n",
"print(\"After dropna:\", pd_merged_clean.shape)\n",
"pd_merged_clean.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Spark data cleaning\n",
"spark_merged_clean = spark_merged.dropna(subset=[\"Age\", \"Fare\"])\n",
"print(\"spark_merged count BEFORE dropna:\", spark_merged.count())\n",
"print(\"spark_merged_clean count AFTER dropna:\", spark_merged_clean.count())\n",
"spark_merged_clean.show(5)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Basic aggregations\n",
"\n",
"pd_avg_fare = pd_merged_clean.groupby(\"Pclass\")[\"Fare\"].mean()\n",
"pd_avg_fare"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Spark survival rate by sex and pclass\n",
"\n",
"spark_survival_rate = (\n",
" spark_merged_clean\n",
" .groupBy(\"Sex\", \"Pclass\")\n",
" .agg(F.avg(\"Survived\").alias(\"survival_rate\"))\n",
")\n",
"spark_survival_rate.show()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Write spark df to parquet\n",
"\n",
"spark_merged_clean.write.mode(\"overwrite\").parquet(\"../titanic_merged_clean.parquet\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Read parquet back in\n",
"\n",
"spark_parquet_df = spark.read.parquet(\"../titanic_merged_clean.parquet\")\n",
"print(\"spark_parquet_df count:\", spark_parquet_df.count())\n",
"spark_parquet_df.show(5)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Bonus - create a temp view/query\n",
"\n",
"spark_merged_clean.createOrReplaceTempView(\"titanic_merged\")\n",
"\n",
"result_df = spark.sql(\n",
" \"\"\"\n",
" SELECT Pclass,\n",
" COUNT(*) AS passenger_count,\n",
" AVG(Age) AS avg_age\n",
" FROM titanic_merged\n",
" GROUP BY Pclass\n",
" ORDER BY Pclass\n",
" \"\"\")\n",
"result_df.show()\n",
"\n",
"#Correlation between Fare and Survival\n",
"# Compute the Pearson correlation between Fare and Survived\n",
"\n",
"correlation1 = spark_merged_clean.stat.corr(\"Fare\", \"Survived\", \"pearson\")\n",
"\n",
"print(\"Pearson correlation between Fare and Survived:\", correlation1)\n",
"\n",
"correlation2 = spark.sql(\n",
" '''\n",
" SELECT\n",
" covar_samp(Fare, Survived) / (stddev_samp(Fare)*stddev_samp(Survived)) as correlation\n",
" FROM titanic_merged_clean\n",
" '''\n",
")\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sentence_transformers import SentenceTransformer\n",
"from pyspark.sql.functions import udf\n",
"from pyspark.sql.types import ArrayType, FloatType\n",
"\n",
"# Load the pre-trained MiniLM sentence transformer model\n",
"model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')\n",
"\n",
"# Define a UDF to compute the embeddings\n",
"def compute_embedding(text):\n",
" return model.encode(text).tolist()\n",
"\n",
"# Register the UDF in Spark\n",
"embedding_udf = udf(compute_embedding, ArrayType(FloatType()))\n",
"\n",
"# Apply the UDF to compute embeddings for each document\n",
"df_with_embeddings = spark_merged_clean.withColumn('mini-lm-vectors', embedding_udf(spark_merged_clean['Name']))\n",
"\n",
"# Show the result\n",
"df_with_embeddings.head()\n",
"\n"
]
}
],
"metadata": {
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|