File size: 8,527 Bytes
cfbd02f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c02076c
cfbd02f
 
 
 
 
 
 
 
 
 
c02076c
cfbd02f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e5d803
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfbd02f
 
 
 
 
 
 
 
96e2e87
cfbd02f
 
 
96e2e87
 
cfbd02f
96e2e87
 
 
 
 
 
 
 
 
cfbd02f
96e2e87
 
 
cfbd02f
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Solutions Guide"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import pandas as pd\n",
    "\n",
    "# PySpark imports\n",
    "from pyspark.sql import SparkSession\n",
    "from pyspark.sql import functions as F\n",
    "from pyspark.sql.types import *\n",
    "\n",
    "# Create or get Spark session\n",
    "spark = SparkSession.builder \\\n",
    "    .appName(\"TitanicAssessmentExtended\") \\\n",
    "    .getOrCreate()\n",
    "\n",
    "print(\"Spark version:\", spark.version)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Explanation:\n",
    "\n",
    "    We import pandas, pyspark.sql modules, and create a Spark session named \"TitanicAssessmentExtended\".\n",
    "    Checking spark.version helps confirm which version of Spark is running."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Read in data \n",
    "titanic_csv_path = os.path.join(\"..\", \"data\", \"titanic.csv\")\n",
    "\n",
    "# 2.1 Read into a Pandas DataFrame\n",
    "pd_df = pd.read_csv(titanic_csv_path)\n",
    "\n",
    "print(\"pd_df shape:\", pd_df.shape)\n",
    "display(pd_df.head())\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We use pd.read_csv(...) to read the Titanic data into a pd.DataFrame.\n",
    ".shape gives the (rows, columns).\n",
    ".head() shows the top few rows."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# 2.2 Read into a Spark DataFrame\n",
    "spark_df = spark.read.csv(titanic_csv_path, header=True, inferSchema=True)\n",
    "\n",
    "spark_df.printSchema()\n",
    "print(\"spark_df count:\", spark_df.count())\n",
    "spark_df.show(5)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We specify header=True so Spark knows the first row is column headers, and inferSchema=True so it automatically detects column types.\n",
    ".printSchema() reveals the inferred schema.\n",
    ".count() and .show() let us see row counts and sample rows."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Split data into subsets\n",
    "\n",
    "pd_part1 = pd_df[[\"PassengerId\", \"Name\", \"Sex\", \"Age\"]]\n",
    "pd_part2 = pd_df[[\"PassengerId\", \"Fare\", \"Survived\", \"Pclass\"]]\n",
    "\n",
    "display(pd_part1.head())\n",
    "display(pd_part2.head())\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "spark_part1 = spark_df.select(\"PassengerId\", \"Name\", \"Sex\", \"Age\")\n",
    "spark_part2 = spark_df.select(\"PassengerId\", \"Fare\", \"Survived\", \"Pclass\")\n",
    "\n",
    "spark_part1.show(5)\n",
    "spark_part2.show(5)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Merging/Joining split dataframes \n",
    "\n",
    "pd_merged = pd_part1.merge(pd_part2, on=\"PassengerId\", how=\"inner\")\n",
    "print(\"pd_merged shape:\", pd_merged.shape)\n",
    "display(pd_merged.head())\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "on=\"PassengerId\" merges the two tables by the PassengerId key.\n",
    "how=\"inner\" ensures rows only appear if they exist in both subsets (should be all matching in this case)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Join in spark\n",
    "\n",
    "spark_merged = spark_part1.join(spark_part2, on=\"PassengerId\", how=\"inner\")\n",
    "print(\"spark_merged count:\", spark_merged.count())\n",
    "spark_merged.show(5)\n",
    "spark_merged.printSchema()\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Spark uses .join(df2, on=\"PassengerId\", how=\"inner\").\n",
    "spark_merged.show(5) and .printSchema() confirm the merge result."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Data cleaning\n",
    "\n",
    "pd_merged_clean = pd_merged.dropna(subset=[\"Age\", \"Fare\"])\n",
    "print(\"Before dropna:\", pd_merged.shape)\n",
    "print(\"After dropna:\", pd_merged_clean.shape)\n",
    "pd_merged_clean.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Spark data cleaning\n",
    "spark_merged_clean = spark_merged.dropna(subset=[\"Age\", \"Fare\"])\n",
    "print(\"spark_merged count BEFORE dropna:\", spark_merged.count())\n",
    "print(\"spark_merged_clean count AFTER dropna:\", spark_merged_clean.count())\n",
    "spark_merged_clean.show(5)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Basic aggregations\n",
    "\n",
    "pd_avg_fare = pd_merged_clean.groupby(\"Pclass\")[\"Fare\"].mean()\n",
    "pd_avg_fare"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Spark survival rate by sex and pclass\n",
    "\n",
    "spark_survival_rate = (\n",
    "    spark_merged_clean\n",
    "    .groupBy(\"Sex\", \"Pclass\")\n",
    "    .agg(F.avg(\"Survived\").alias(\"survival_rate\"))\n",
    ")\n",
    "spark_survival_rate.show()\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Write spark df to parquet\n",
    "\n",
    "spark_merged_clean.write.mode(\"overwrite\").parquet(\"../titanic_merged_clean.parquet\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Read parquet back in\n",
    "\n",
    "spark_parquet_df = spark.read.parquet(\"../titanic_merged_clean.parquet\")\n",
    "print(\"spark_parquet_df count:\", spark_parquet_df.count())\n",
    "spark_parquet_df.show(5)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Bonus - create a temp view/query\n",
    "\n",
    "spark_merged_clean.createOrReplaceTempView(\"titanic_merged\")\n",
    "\n",
    "result_df = spark.sql(\n",
    "    \"\"\"\n",
    "    SELECT Pclass,\n",
    "        COUNT(*) AS passenger_count,\n",
    "        AVG(Age) AS avg_age\n",
    "    FROM titanic_merged\n",
    "    GROUP BY Pclass\n",
    "    ORDER BY Pclass\n",
    "    \"\"\")\n",
    "result_df.show()\n",
    "\n",
    "#Correlation between Fare and Survival\n",
    "# Compute the Pearson correlation between Fare and Survived\n",
    "\n",
    "correlation1 = spark_merged_clean.stat.corr(\"Fare\", \"Survived\", \"pearson\")\n",
    "\n",
    "print(\"Pearson correlation between Fare and Survived:\", correlation1)\n",
    "\n",
    "correlation2 = spark.sql(\n",
    "    '''\n",
    "    SELECT\n",
    "    covar_samp(Fare, Survived) / (stddev_samp(Fare)*stddev_samp(Survived)) as correlation\n",
    "    FROM titanic_merged_clean\n",
    "    '''\n",
    ")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from sentence_transformers import SentenceTransformer\n",
    "from pyspark.sql.functions import udf\n",
    "from pyspark.sql.types import ArrayType, FloatType\n",
    "\n",
    "# Load the pre-trained MiniLM sentence transformer model\n",
    "model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')\n",
    "\n",
    "# Define a UDF to compute the embeddings\n",
    "def compute_embedding(text):\n",
    "    return model.encode(text).tolist()\n",
    "\n",
    "# Register the UDF in Spark\n",
    "embedding_udf = udf(compute_embedding, ArrayType(FloatType()))\n",
    "\n",
    "# Apply the UDF to compute embeddings for each document\n",
    "df_with_embeddings = spark_merged_clean.withColumn('mini-lm-vectors', embedding_udf(spark_merged_clean['Name']))\n",
    "\n",
    "# Show the result\n",
    "df_with_embeddings.head()\n",
    "\n"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "name": "python"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}