Spaces:
Sleeping
Sleeping
File size: 10,297 Bytes
e19a510 cfbd02f e19a510 cfbd02f e19a510 cfbd02f e19a510 cfbd02f e19a510 cfbd02f e19a510 cfbd02f e19a510 cfbd02f 8e5d803 cfbd02f 8e5d803 cfbd02f 8e5d803 cfbd02f 8e5d803 cfbd02f 8e5d803 cfbd02f 8e5d803 cfbd02f 8e5d803 cfbd02f c02076c cfbd02f c02076c cfbd02f 8e5d803 cfbd02f 8e5d803 cfbd02f 8e5d803 cfbd02f 8e5d803 cfbd02f 8e5d803 cfbd02f 96e2e87 e19a510 96e2e87 e19a510 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# PySpark Data Engineering Assessment (Extended)\n",
"\n",
"Welcome! In this notebook, you'll practice:\n",
"\n",
"1. Reading the **Titanic CSV** in **Pandas** and **PySpark**.\n",
"2. **Splitting** a single dataset into two DataFrames and **merging** them back together in both Pandas and Spark.\n",
"3. Data cleaning and aggregations in Pandas and Spark.\n",
"4. Writing and reading **Parquet** files.\n",
"5. Creating a **PySpark UDF** that leverages a **lightweight transformer model** to compute embeddings for passenger names.\n",
"\n",
"---\n",
"\n",
"## Dataset\n",
"\n",
"- **`titanic.csv`**: This file is in the `../data/` directory, containing columns such as:\n",
" - `PassengerId`, `Name`, `Sex`, `Age`, `Fare`, `Survived`, etc.\n",
"\n",
"We will:\n",
"1. Read `titanic.csv` into Pandas and Spark.\n",
"2. Split the original DataFrame into two subsets (simulating two “tables”).\n",
"3. Demonstrate merges/joins in Pandas and Spark using these subsets.\n",
"4. Perform data cleaning and transformations.\n",
"5. Write to Parquet.\n",
"6. Implement a Spark UDF to generate embeddings for passenger names.\n",
"\n",
"---\n",
"\n",
"## Instructions\n",
"\n",
"Throughout the notebook, you'll see `TODO` sections. Please fill in the required code. Feel free to add extra cells or explanations as needed.\n",
"\n",
"When finished, please save or export this notebook and submit according to your instructions.\n",
"\n",
"Let's begin!\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# 1. Imports and Spark Setup\n",
"\n",
"import os\n",
"import pandas as pd\n",
"\n",
"# PySpark imports\n",
"from pyspark.sql import SparkSession\n",
"from pyspark.sql import functions as F\n",
"from pyspark.sql.types import *\n",
"\n",
"# Create/initialize Spark session\n",
"spark = SparkSession.builder \\\n",
" .appName(\"TitanicAssessmentExtended\") \\\n",
" .getOrCreate()\n",
"\n",
"print(\"Spark version:\", spark.version)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# 2. Read the Titanic CSV (Pandas & Spark)\n",
"# ========================================\n",
"\n",
"# Path to the CSV file\n",
"titanic_csv_path = os.path.join(\"..\", \"data\", \"titanic.csv\")\n",
"\n",
"# 2.1 TODO: Read 'titanic.csv' into a Pandas DataFrame (pd_df)\n",
"# pd_df = ?\n",
"\n",
"# Inspect the shape and first few rows\n",
"# print(\"pd_df shape:\", pd_df.shape)\n",
"# display(pd_df.head())\n",
"\n",
"# 2.2 TODO: Read 'titanic.csv' into a Spark DataFrame (spark_df)\n",
"# spark_df = ?\n",
"\n",
"# Check schema and row count\n",
"# spark_df. ...\n",
"# print(\"spark_df count:\", spark_df. ...)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# 3. Split Data into Two Subsets for Merging/Joining\n",
"# ==================================================\n",
"# Split the dataset into two df's by column, then merge them \n",
"# back together\n",
"# df_part1: subset of columns -> PassengerId, Name, Sex, Age\n",
"# df_part2: subset of columns -> PassengerId, Fare, Survived, Pclass\n",
"#\n",
"# \n",
"\n",
"# 3.1 Pandas Split\n",
"# ----------------\n",
"\n",
"# TODO: Create two new DataFrames from pd_df:\n",
"# pd_part1 = pd_df[[\"PassengerId\", \"Name\", \"Sex\", \"Age\"]]\n",
"# pd_part2 = pd_df[...]\n",
"\n",
"# pd_part1 = ?\n",
"# pd_part2 = ?\n",
"\n",
"# display(pd_part1.head())\n",
"# display(pd_part2.head())\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# 3.2 Spark Split\n",
"# ---------------\n",
"# TODO: Create two new DataFrames from spark_df:\n",
"# spark_part1 = spark_df. ...\n",
"# spark_part2 = spark_df. ...\n",
"\n",
"# spark_part1 = ?\n",
"# spark_part2 = ?\n",
"\n",
"# spark_part1.show(5)\n",
"# spark_part2.show(5)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# 4. Merging / Joining the Split DataFrames\n",
"# =========================================\n",
"\n",
"# 4.1 Merge in Pandas\n",
"# -------------------\n",
"# TODO: Merge pd_part1 and pd_part2 on \"PassengerId\"\n",
"# We'll call the merged DataFrame \"pd_merged\".\n",
"#\n",
"\n",
"# pd_merged = ?\n",
"# print(\"pd_merged shape:\", pd_merged.shape)\n",
"# display(pd_merged.head())\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# 4.2 Join in Spark\n",
"# -----------------\n",
"# TODO: Join spark_part1 with spark_part2 on \"PassengerId\"\n",
"# We'll call the joined DataFrame \"spark_merged\".\n",
"#\n",
"\n",
"\n",
"#Uncomment below\n",
"# spark_merged = ?\n",
"# print(\"spark_merged count:\", spark_merged.count())\n",
"# spark_merged.show(5)\n",
"# spark_merged.printSchema()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# 5. Data Cleaning\n",
"# ================\n",
"# We'll focus on the merged DataFrames. For instance, drop rows that have missing\n",
"# values in certain columns like 'Age' or 'Fare'.\n",
"\n",
"# 5.1 TODO: Pandas DataFrame cleaning\n",
"# Create a cleaned version, 'pd_merged_clean',\n",
"# dropping nulls in [\"Age\", \"Fare\"].\n",
"\n",
"# pd_merged_clean = ?\n",
"\n",
"# print(\"Before dropna:\", pd_merged.shape)\n",
"# print(\"After dropna:\", pd_merged_clean.shape)\n",
"# pd_merged_clean.head()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# 5.2 TODO: Spark DataFrame cleaning\n",
"# Create a cleaned version, 'spark_merged_clean',\n",
"# dropping nulls in [\"Age\", \"Fare\"].\n",
"\n",
"# spark_merged_clean = ?\n",
"\n",
"# print(\"spark_merged count BEFORE dropna:\", spark_merged.count())\n",
"# print(\"spark_merged_clean count AFTER dropna:\", spark_merged_clean.count())\n",
"# spark_merged_clean.show(5)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# 6. Basic Aggregations\n",
"# =====================\n",
"# Let's do a couple of group-by queries to glean insights.\n",
"\n",
"# 6.1 TODO: Pandas - Average fare by Pclass\n",
"# e.g. group by 'Pclass' and compute mean fare in pd_merged_clean\n",
"\n",
"# pd_avg_fare = ?\n",
"# pd_avg_fare\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# 6.2 TODO: Spark - Survival rate by Sex and Pclass\n",
"# Average survival rate by Sex and Pclass\n",
"#\n",
"# spark_survival_rate = ?\n",
"# spark_survival_rate.show()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# 7. Writing to Parquet\n",
"# =====================\n",
"# We'll write the cleaned Spark DataFrame to a Parquet file (e.g. \"../titanic_merged_clean.parquet\").\n",
"\n",
"# 7.1 TODO: Write spark_merged_clean to Parquet\n",
"# e.g., spark_merged_clean.write. ...\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# 7.2 TODO: Read it back into a new Spark DataFrame called 'spark_parquet_df'\n",
"# spark_parquet_df = ?\n",
"\n",
"# print(\"spark_parquet_df count:\", spark_parquet_df.count())\n",
"# spark_parquet_df.show(5)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# 8. Create a Temp View and Query\n",
"# ========================================\n",
"# 8.1 TODO: Create a temp view with 'spark_merged_clean' (e.g. \"titanic_merged\")\n",
"# spark_merged_clean.createOrReplaceTempView(\"titanic_merged\")\n",
"\n",
"# 8.2 TODO: Spark SQL query examples\n",
"\n",
"#Get the average passenger age grouped by PClass\n",
"# result_df = spark.sql(\"SELECT ... FROM titanic_merged GROUP BY ...\")\n",
"# result_df.show()\n",
"\n",
"# Calculate the Pearson correlation between passenger Fare and Survival\n",
"# using either SQL or another method\n",
"# Corr.(X, Y) = cov(X,Y)/(std(X)*std(Y))\n",
"# corr = ..."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# 9. Bonus 2: Transformer Embeddings UDF\n",
"# ======================================\n",
"\n",
"from sentence_transformers import SentenceTransformer\n",
"from pyspark.sql.functions import udf\n",
"from pyspark.sql.types import ArrayType, FloatType\n",
"\n",
"# Load the pre-trained MiniLM sentence transformer model\n",
"model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')\n",
"\n",
"# Define a UDF to compute the embeddings\n",
"def compute_embedding(text):\n",
" '''\n",
" Your function goes here\n",
" '''\n",
" pass\n",
"\n",
"# Register the UDF in Spark\n",
"embedding_udf = None #Replace with your udf\n",
"\n",
"# Apply the UDF to compute embeddings for each document\n",
"df_with_embeddings = spark_merged_clean.withColumn('mini-lm-vectors', '...')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": []
}
],
"metadata": {
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|