Spaces:
Sleeping
Sleeping
File size: 4,614 Bytes
5092e07 9b5b26a c19d193 c5afa64 8fe992b c5afa64 5df72d6 9b5b26a 5092e07 c5afa64 9b5b26a c5afa64 9b5b26a 8c01ffb 6aae614 5092e07 5153255 5092e07 1d9658a 5092e07 9f8c7c1 5092e07 1d9658a 5092e07 9f8c7c1 1d9658a 9f8c7c1 1d9658a 9f8c7c1 5092e07 8c01ffb 9b5b26a 8c01ffb c5afa64 861422e c5afa64 8c01ffb 8fe992b c5afa64 5092e07 c5afa64 8c01ffb c5afa64 8fe992b 5092e07 9b5b26a 5092e07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
from smolagents import (
CodeAgent,
HfApiModel,
TransformersModel,
OpenAIServerModel,
load_tool,
tool,
)
import os
import datetime
import pytz
import yaml
from tools import (
FinalAnswerTool,
VisitWebpageTool,
DuckDuckGoSearchTool, # This is also built-in in smolagents
)
# Below is an example of a tool that does nothing. Amaze us with your creativity !
@tool
def my_custom_tool(
arg1: str, arg2: int
) -> str: # it's import to specify the return type
# Keep this format for the description / args / args description but feel free to modify the tool
"""A tool that does nothing yet
Args:
arg1: the first argument
arg2: the second argument
"""
return "What magic will you build ?"
@tool
def get_current_time_in_timezone(timezone: str) -> str:
"""A tool that fetches the current local time in a specified timezone.
Args:
timezone: A string representing a valid timezone (e.g., 'America/New_York').
"""
try:
# Create timezone object
tz = pytz.timezone(timezone)
# Get current time in that timezone
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
return f"The current local time in {timezone} is: {local_time}"
except Exception as e:
return f"Error fetching time for timezone '{timezone}': {str(e)}"
final_answer = FinalAnswerTool()
if IS_IN_HF_SPACE := os.getenv("SPACE_ID"):
# model_id = (
# # BUG: Seems we are failed to call this model => bad request
# "https://wxknx1kg971u7k1n.us-east-1.aws.endpoints.huggingface.cloud" # it is possible that this model may be overloaded
# if True
# # BUG: Model not loaded on the server: https://api-inference.huggingface.co/models/Qwen/Qwen2.5-Coder-32B-Instruct/v1/chat/completions. Please retry with a higher timeout (current: 120)
# # BUG: TooManyRequests: Please log in or use a HF access token
# else "Qwen/Qwen2.5-Coder-32B-Instruct" # The default value of HfApiModel
# )
# https://discord.com/channels/879548962464493619/1336751588391391283/1338901490651103414
model_id = "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B"
print("Using HfApiModel with model_id:", model_id)
model = HfApiModel(
max_tokens=2096 if IS_IN_HF_SPACE else None,
temperature=0.5,
model_id=model_id,
custom_role_conversions=None,
)
else:
from dotenv import load_dotenv
# NOTE: to load the Hugging Face API Key
curr_dir = os.path.dirname(os.path.abspath(__file__))
load_dotenv(os.path.join(curr_dir, "../../.env"))
if OPENAI_API_KEY := os.getenv("OPENAI_API_KEY"):
print("Using OpenAIServerModel with model_id: gpt-3.5-turbo")
model = OpenAIServerModel(model_id="gpt-3.5-turbo", api_key=OPENAI_API_KEY)
else:
# NOTE: this model is not good enough for agent (and still might be too heavy to run on a normal computer)
# print(
# "Using TransformersModel with model_id: HuggingFaceTB/SmolLM2-1.7B-Instruct"
# )
#
# model = TransformersModel(
# model_id="HuggingFaceTB/SmolLM2-1.7B-Instruct", trust_remote_code=True
# )
# NOTE: this model is well enough to use simple tools (but need authentication)
# https://huggingface.co./meta-llama/Llama-3.2-11B-Vision-Instruct
# https://huggingface.co./settings/gated-repos
print(
"Using HfApiModel with model_id: meta-llama/Llama-3.2-11B-Vision-Instruct"
)
# NOTE: this use InferenceClient under the hood
model = HfApiModel(
temperature=0.5,
model_id="meta-llama/Llama-3.2-11B-Vision-Instruct",
custom_role_conversions=None,
)
# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
duckduckgo_tool = DuckDuckGoSearchTool()
visit_webpage_tool = VisitWebpageTool()
with open("prompts.yaml", "r") as stream:
prompt_templates = yaml.safe_load(stream)
agent = CodeAgent(
model=model,
tools=[
final_answer,
my_custom_tool,
get_current_time_in_timezone,
image_generation_tool,
duckduckgo_tool,
visit_webpage_tool,
], # Add your tools here (don't remove final answer)
max_steps=6,
verbosity_level=1,
grammar=None,
planning_interval=None,
name=None,
description=None,
prompt_templates=prompt_templates,
)
if __name__ == "__main__":
from Gradio_UI import GradioUI
GradioUI(agent).launch()
|