File size: 4,614 Bytes
5092e07
 
 
 
 
 
 
 
 
9b5b26a
 
c19d193
c5afa64
 
 
 
 
8fe992b
c5afa64
5df72d6
9b5b26a
5092e07
c5afa64
 
 
 
9b5b26a
 
 
 
 
 
c5afa64
9b5b26a
 
 
 
 
 
 
 
 
 
 
 
 
 
8c01ffb
 
6aae614
5092e07
 
5153255
 
 
 
 
 
 
 
 
 
 
5092e07
1d9658a
 
5092e07
9f8c7c1
5092e07
 
 
 
 
 
 
 
 
 
 
 
 
1d9658a
 
5092e07
 
9f8c7c1
 
 
 
 
 
 
 
 
 
 
 
1d9658a
9f8c7c1
1d9658a
 
9f8c7c1
 
 
 
 
5092e07
8c01ffb
9b5b26a
 
8c01ffb
c5afa64
 
 
 
861422e
c5afa64
8c01ffb
8fe992b
c5afa64
 
5092e07
 
c5afa64
 
 
 
8c01ffb
 
 
 
 
 
c5afa64
8fe992b
 
5092e07
 
9b5b26a
5092e07
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
from smolagents import (
    CodeAgent,
    HfApiModel,
    TransformersModel,
    OpenAIServerModel,
    load_tool,
    tool,
)
import os
import datetime
import pytz
import yaml
from tools import (
    FinalAnswerTool,
    VisitWebpageTool,
    DuckDuckGoSearchTool,  # This is also built-in in smolagents
)


# Below is an example of a tool that does nothing. Amaze us with your creativity !
@tool
def my_custom_tool(
    arg1: str, arg2: int
) -> str:  # it's import to specify the return type
    # Keep this format for the description / args / args description but feel free to modify the tool
    """A tool that does nothing yet
    Args:
        arg1: the first argument
        arg2: the second argument
    """
    return "What magic will you build ?"


@tool
def get_current_time_in_timezone(timezone: str) -> str:
    """A tool that fetches the current local time in a specified timezone.
    Args:
        timezone: A string representing a valid timezone (e.g., 'America/New_York').
    """
    try:
        # Create timezone object
        tz = pytz.timezone(timezone)
        # Get current time in that timezone
        local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
        return f"The current local time in {timezone} is: {local_time}"
    except Exception as e:
        return f"Error fetching time for timezone '{timezone}': {str(e)}"


final_answer = FinalAnswerTool()

if IS_IN_HF_SPACE := os.getenv("SPACE_ID"):
    # model_id = (
    #     # BUG: Seems we are failed to call this model => bad request
    #     "https://wxknx1kg971u7k1n.us-east-1.aws.endpoints.huggingface.cloud"  # it is possible that this model may be overloaded
    #     if True
    #     # BUG: Model not loaded on the server: https://api-inference.huggingface.co/models/Qwen/Qwen2.5-Coder-32B-Instruct/v1/chat/completions. Please retry with a higher timeout (current: 120)
    #     # BUG: TooManyRequests: Please log in or use a HF access token
    #     else "Qwen/Qwen2.5-Coder-32B-Instruct"  # The default value of HfApiModel
    # )

    # https://discord.com/channels/879548962464493619/1336751588391391283/1338901490651103414
    model_id = "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B"

    print("Using HfApiModel with model_id:", model_id)

    model = HfApiModel(
        max_tokens=2096 if IS_IN_HF_SPACE else None,
        temperature=0.5,
        model_id=model_id,
        custom_role_conversions=None,
    )

else:
    from dotenv import load_dotenv

    # NOTE: to load the Hugging Face API Key
    curr_dir = os.path.dirname(os.path.abspath(__file__))
    load_dotenv(os.path.join(curr_dir, "../../.env"))

    if OPENAI_API_KEY := os.getenv("OPENAI_API_KEY"):
        print("Using OpenAIServerModel with model_id: gpt-3.5-turbo")

        model = OpenAIServerModel(model_id="gpt-3.5-turbo", api_key=OPENAI_API_KEY)
    else:
        # NOTE: this model is not good enough for agent (and still might be too heavy to run on a normal computer)
        # print(
        #     "Using TransformersModel with model_id: HuggingFaceTB/SmolLM2-1.7B-Instruct"
        # )
        #
        # model = TransformersModel(
        #     model_id="HuggingFaceTB/SmolLM2-1.7B-Instruct", trust_remote_code=True
        # )

        # NOTE: this model is well enough to use simple tools (but need authentication)
        # https://huggingface.co./meta-llama/Llama-3.2-11B-Vision-Instruct
        # https://huggingface.co./settings/gated-repos
        print(
            "Using HfApiModel with model_id: meta-llama/Llama-3.2-11B-Vision-Instruct"
        )

        # NOTE: this use InferenceClient under the hood
        model = HfApiModel(
            temperature=0.5,
            model_id="meta-llama/Llama-3.2-11B-Vision-Instruct",
            custom_role_conversions=None,
        )

# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)

duckduckgo_tool = DuckDuckGoSearchTool()
visit_webpage_tool = VisitWebpageTool()

with open("prompts.yaml", "r") as stream:
    prompt_templates = yaml.safe_load(stream)

agent = CodeAgent(
    model=model,
    tools=[
        final_answer,
        my_custom_tool,
        get_current_time_in_timezone,
        image_generation_tool,
        duckduckgo_tool,
        visit_webpage_tool,
    ],  # Add your tools here (don't remove final answer)
    max_steps=6,
    verbosity_level=1,
    grammar=None,
    planning_interval=None,
    name=None,
    description=None,
    prompt_templates=prompt_templates,
)

if __name__ == "__main__":
    from Gradio_UI import GradioUI

    GradioUI(agent).launch()