danielle2003 commited on
Commit
e631481
·
1 Parent(s): 6e15199
Files changed (1) hide show
  1. scripts/evaluate.py +4 -4
scripts/evaluate.py CHANGED
@@ -1,5 +1,5 @@
1
  import torch
2
- from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
3
  from datasets import load_dataset
4
  from sklearn.metrics import accuracy_score, f1_score
5
 
@@ -15,14 +15,14 @@ classifier = pipeline("text-classification", model=model_path, tokenizer=model_p
15
 
16
  # Load model to get dynamic label mapping
17
  model = AutoModelForSequenceClassification.from_pretrained(model_path)
18
- label_map = {v: f"LABEL_{k}" for k, v in model.config.label2id.items()} # Ensure mapping is correct
19
 
20
  # Get predictions
21
  predictions = [classifier(text["review"], truncation=True, max_length=512)[0]["label"] for text in dataset]
22
  labels = dataset["label"]
23
 
24
- # Convert labels
25
- predictions = [int(label_map[p].split("_")[-1]) for p in predictions] # Convert back to int labels
26
 
27
  # Compute metrics
28
  accuracy = accuracy_score(labels, predictions)
 
1
  import torch
2
+ from transformers import pipeline, AutoModelForSequenceClassification
3
  from datasets import load_dataset
4
  from sklearn.metrics import accuracy_score, f1_score
5
 
 
15
 
16
  # Load model to get dynamic label mapping
17
  model = AutoModelForSequenceClassification.from_pretrained(model_path)
18
+ label_map = model.config.label2id # Correct direct mapping {LABEL_X: int}
19
 
20
  # Get predictions
21
  predictions = [classifier(text["review"], truncation=True, max_length=512)[0]["label"] for text in dataset]
22
  labels = dataset["label"]
23
 
24
+ # Convert labels (direct mapping)
25
+ predictions = [label_map[p] for p in predictions]
26
 
27
  # Compute metrics
28
  accuracy = accuracy_score(labels, predictions)