Spaces:
Sleeping
Sleeping
from transformers import Trainer, TrainingArguments, AutoModelForSequenceClassification, AutoTokenizer | |
from datasets import load_dataset | |
# Load dataset (French dataset example: Allociné) | |
dataset = load_dataset("allocine") | |
dataset["train"] = dataset["train"].select(range(10)) # Train on 500 samples | |
dataset["test"] = dataset["test"].select(range(5)) # Test on 200 samples | |
# Load tokenizer | |
model_name = "distilbert-base-multilingual-cased" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# Tokenize data | |
def tokenize(batch): | |
return tokenizer(batch["review"], padding="max_length", truncation=True) | |
dataset = dataset.map(tokenize, batched=True) | |
# Load model | |
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=3) | |
# Training arguments | |
training_args = TrainingArguments( | |
output_dir="./models", | |
evaluation_strategy="epoch", # Ensure this matches the save_strategy | |
save_strategy="epoch", # Change this to "epoch" to match evaluation_strategy | |
load_best_model_at_end=True, # Ensures best model is loaded | |
save_total_limit=2, # Keep only the last 2 models to save space | |
per_device_train_batch_size=8, | |
per_device_eval_batch_size=8, | |
num_train_epochs=3, | |
weight_decay=0.01, | |
) | |
# Trainer setup | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=dataset["train"], | |
eval_dataset=dataset["test"], | |
) | |
# Train model | |
trainer.train() | |
# Save model | |
model.save_pretrained("./models") | |
tokenizer.save_pretrained("./models") | |