Spaces:
Running
Running
import streamlit as st | |
import os | |
from PIL import Image | |
# Set the page layout | |
st.set_page_config(layout="wide") | |
import json | |
import base64 | |
import time | |
from dotenv import load_dotenv | |
import os | |
import requests | |
import pickle | |
import numpy as np | |
# Load model once | |
with open("best_clf.pkl", "rb") as file: | |
best_clf = pickle.load(file) | |
# Try loading environment variables locally | |
try: | |
from dotenv import load_dotenv | |
load_dotenv() | |
except: | |
pass | |
# Get the token from environment variables | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
def query_huggingface_model(selected_model: dict, input_data, input_type="text",max_tokens=512,task="text-classification",temperature=0.7, top_p=0.9 ): | |
API_URL = selected_model.get("url") | |
headers = {"Authorization": f"Bearer {HF_TOKEN}"} | |
try: | |
if input_type == "text": | |
if task == "text-generation": | |
payload = { | |
"messages": [ | |
{ | |
"role": "user", | |
"content": input_data | |
} | |
], | |
"model":selected_model.get("model") | |
} | |
else: | |
payload = { | |
"inputs": input_data , | |
} | |
response = requests.post(API_URL, headers=headers, json=payload) | |
elif input_type == "image": | |
with open(input_data, "rb") as f: | |
data = f.read() | |
response = requests.post(API_URL, headers=headers, data=data) | |
else: | |
return {"error": f"Unsupported input_type: {input_type}"} | |
response.raise_for_status() | |
return response.json() | |
except requests.exceptions.RequestException as e: | |
return {"error": str(e)} | |
def extract_response_content(response): | |
print(f"Response is: {response}") | |
# For text generation or image captioning | |
if isinstance(response, list): | |
if response and isinstance(response[0], dict) and "generated_text" in response[0]: | |
return response[0]["generated_text"] | |
elif response and isinstance(response[0], list) and "label" in response[0][0]: | |
# For text classification | |
return [(item["label"], round(item["score"], 3)) for item in response[0]] | |
# For OpenAI-style chat responses | |
elif isinstance(response, dict): | |
if "choices" in response and isinstance(response["choices"], list): | |
try: | |
return response["choices"][0]["message"]["content"] | |
except (KeyError, IndexError, TypeError): | |
return "Error: Could not extract message from choices" | |
elif "error" in response: | |
return f"Error: {response['error']}" | |
return "Unknown response format" | |
# --- Step 1 --- | |
if 'name' not in st.session_state: | |
st.session_state.name = "Paul" | |
if 'gender' not in st.session_state: | |
st.session_state.gender = "Male" | |
if 'age' not in st.session_state: | |
st.session_state.age = 25 | |
if 'currentSmoker' not in st.session_state: | |
st.session_state.currentSmoker = "Yes" | |
if 'cigsPerDay' not in st.session_state: | |
st.session_state.cigsPerDay = 0 | |
if 'BPMeds' not in st.session_state: | |
st.session_state.BPMeds = False | |
if 'diabetes' not in st.session_state: | |
st.session_state.diabetes = False | |
# --- Step 2 --- | |
if 'totChol' not in st.session_state: | |
st.session_state.totChol = 180 # mg/dL | |
if 'sysBP' not in st.session_state: | |
st.session_state.sysBP = 120 # mmHg | |
if 'diaBP' not in st.session_state: | |
st.session_state.diaBP = 80 # mmHg | |
# --- Step 3 --- | |
if 'BMI' not in st.session_state: | |
st.session_state.BMI = 22.0 | |
if 'heartRate' not in st.session_state: | |
st.session_state.heartRate = 70 # bpm | |
if 'glucose' not in st.session_state: | |
st.session_state.glucose = 90 # mg/dL | |
# Optional: prediction result | |
if 'Risk' not in st.session_state: | |
st.session_state.Risk = 1 | |
if 'proba' not in st.session_state: | |
st.session_state.proba = 80 | |
if "framework" not in st.session_state: | |
st.session_state.framework = "gen" | |
# Initialize state | |
if "form1" not in st.session_state: | |
st.session_state.form1 = "back" | |
if "form2" not in st.session_state: | |
st.session_state.form2 = "back" | |
if "form3" not in st.session_state: | |
st.session_state.form3 = "back" | |
if "form4" not in st.session_state: | |
st.session_state.form4 = "back" | |
if "form5" not in st.session_state: | |
st.session_state.form5 = "back" | |
if "form6" not in st.session_state: | |
st.session_state.form6 = "back" | |
if st.session_state.form1 == "next": | |
start1 = 46 | |
back1 = "#6dc9e4" | |
background = "#f3f3f4" | |
fill = '#6dc9e4' | |
back2 = "#4794ff" | |
back3 = "#6dc9e4" | |
back4 = "#6dc9e4" | |
elif st.session_state.form1 == "back": | |
start1 = 0 | |
back1 = "#4794ff" | |
back2 = "#6dc9e4" | |
back3 = "#6dc9e4" | |
back4 = "#6dc9e4" | |
background =" white" | |
fill = "#f7f7f7" | |
################################## | |
if st.session_state.form2 == "next": | |
start2 = 46 | |
background2 = "#f3f3f4" | |
fill2 = '#6dc9e4' | |
back3 = "#4794ff" | |
back2 = "#6dc9e4" | |
back1 = "#6dc9e4" | |
back4 = "#6dc9e4" | |
elif st.session_state.form2 == "back": | |
start2 = 0 | |
background2 =" white" | |
fill2 = "#f7f7f7" | |
#################################### | |
if st.session_state.form3 == "next": | |
start3 = 46 | |
background3 = "#f3f3f4" | |
back4 = "#4794ff" | |
back2 = "#6dc9e4" | |
back1 = "#6dc9e4" | |
back3 = "#6dc9e4" | |
fill3 = '#6dc9e4' | |
border = "grey" | |
elif st.session_state.form3 == "back": | |
start3 = 0 | |
background3 =" white" | |
fill3 = "#f7f7f7" | |
#################################### | |
if st.session_state.form4 == "next": | |
start4 = 46 | |
background4 = "#f3f3f4" | |
fill4 = '#6dc9e4' | |
back4 = "#6dc9e4" | |
elif st.session_state.form4 == "back": | |
start4 = 0 | |
background4 =" white" | |
fill4 = "#f7f7f7" | |
if st.session_state.framework == "gen": | |
encoded_logo = "hugging.png" | |
main_bg_ext = "png" | |
main_bg = "image.gif" | |
st.markdown( | |
f""" | |
<style> | |
/* Container for logo and text */ | |
/* Container for logo and text */ | |
.logo-text-container {{ | |
position: fixed; | |
top: 20px; /* Adjust vertical position */ | |
left: 30px; /* Align with sidebar */ | |
display: flex; | |
align-items: center; | |
gap: 10px; | |
width: 70%; | |
z-index:1000; | |
}} | |
/* Logo styling */ | |
.logo-text-container img {{ | |
width: 90px; /* Adjust logo size */ | |
border-radius: 10px; /* Optional: round edges */ | |
margin-left:-5px; | |
margin-top: -15px; | |
}} | |
/* Bold text styling */ | |
.logo-text-container h1 {{ | |
font-family: Nunito; | |
color: #0175C2; | |
font-size: 20px; | |
font-weight: bold; | |
margin-left :-30px; | |
padding:0px; | |
top:0; | |
margin-top: 10px; | |
}} | |
.logo-text-container h1 span{{ | |
font-family: Nunito; | |
color: green; | |
font-size: 20px; | |
margin-right :10px; | |
font-weight: bold; | |
padding:0px; | |
margin-left:1px; | |
margin-top:2% !important; | |
}} | |
/* Sidebar styling */ | |
section[data-testid="stSidebar"][aria-expanded="true"] {{ | |
margin-top: 100px !important; /* Space for the logo */ | |
border-radius: 0 60px 0px 60px !important; /* Top-left and bottom-right corners */ | |
width: 300px !important; /* Sidebar width */ | |
background: none; /* No background */ | |
color: white !important; | |
}} | |
header[data-testid="stHeader"] {{ | |
background: #e4f8f8 !important; | |
margin-left: -80px !important; | |
margin-top: 1px !important; | |
z-index: 1 !important; | |
color: blue; /* White text */ | |
font-family: "Times New Roman " !important; /* Font */ | |
font-size: 18px !important; /* Font size */ | |
font-weight: bold !important; /* Bold text */ | |
padding: 10px 20px; /* Padding for buttons */ | |
border-top-left-radius: 30px; | |
border-top-right-radius: 30px; | |
transition: all 0.3s ease-in-out; /* Smooth transition */ | |
display: flex; | |
align-items: center; | |
justify-content: center; | |
margin: 10px 0; | |
width:100% !important; | |
left:5.5%; | |
height:420px; | |
margin-top:30px; | |
backdrop-filter: blur(10px); | |
}} | |
div[data-testid="stDecoration"] {{ | |
background-image: none; | |
}} | |
div[data-testid="stApp"] {{ | |
background-size: cover; /* Ensure the image covers the full page */ | |
background-position: center; | |
background-repeat:no-repeat; | |
height: 98vh; | |
width: 99.3%; | |
border-radius: 20px !important; | |
margin-left: 5px; | |
margin-right: 20px; | |
margin-top: 10px; | |
overflow: hidden; | |
backdrop-filter: blur(10px); /* Glass effect */ | |
-webkit-backdrop-filter: blur(10px); | |
border: 1px solid rgba(255, 255, 255, 0.2); /* Light border */ | |
border-radius:25px; | |
}} | |
[class*="st-key-main"] {{ | |
position: absolute; | |
width: 85vw !important; | |
margin-left: 50px; | |
z-index:10000000; | |
border-radius:30px; | |
padding: 10px; | |
margin-top:-20px; | |
background:white; | |
box-shadow: 0px 4px 10px rgba(0, 0, 0, 0.1); /* Shadow effect */ | |
height: 61vh; | |
width: 95.3%; | |
}} | |
[class*="st-key-side"] {{ | |
position: absolute; | |
width: 40vw !important; | |
margin-left: 5px; | |
z-index:10000000; | |
border-radius:30px; | |
padding: 10px; | |
background-image: url(data:image/png;base64,{base64.b64encode(open('back.gif', "rb").read()).decode()}); | |
margin-top:10px; | |
background-size: cover; /* Ensure the image covers the full page */ | |
background-position: center; | |
background-repeat:no-repeat; | |
box-shadow: -5px 0px 10px rgba(0, 0, 0, 0.1); /* Shadow on the left */ | |
height: 56vh; | |
border-bottom-right-radius: 0px ; | |
border-top-right-radius: 0px ; | |
border-left:2px solid #4794ff; | |
border-right:2px solid #4794ff; | |
width: 95.3%; | |
}} | |
.result{{ | |
}} | |
.result h3{{ | |
font-family: "Times New Roman" !important; | |
font-size:16px; | |
margin-top:-30px; | |
}} | |
[class*="st-key-result"]{{ | |
height: 56vh; | |
border-radius:30px; | |
margin-top:10px; | |
position:absolute; | |
margin-left:-5px !important; | |
box-shadow: 6px 0px 10px rgba(0, 0, 0, 0.1); | |
border-right:2px solid #4794ff; | |
}} | |
[class*="st-key-explain"]{{ | |
background-image: url(data:image/png;base64,{base64.b64encode(open("gem.jpg", "rb").read()).decode()}); | |
background-size: contain; /* size of the image */ | |
background-repeat: no-repeat; | |
box-shadow: 0px 4px 10px rgba(0, 0, 0, 0.2); /* Shadow effect */ | |
width:250px; | |
margin-left:370px; | |
border-radius: 30px; | |
height:50px !important; | |
margin-top:50px; | |
border-right:2px solid #4794ff; | |
border-left:2px solid #4794ff; | |
}} | |
[class*="st-key-explain"] > div.stButton > button{{ | |
width:300px; | |
background: transparent; | |
border-radius:35px; | |
height:30px; | |
}} | |
[class*="st-key-explain"] > div.stButton > button p{{ | |
margin-left:5px; | |
color :#0175C2 !important; | |
align-item:center; | |
font-size:14px !important; | |
margin-top:5px; | |
}} | |
[class*="st-key-explain"] > div.stButton{{ | |
border-radius:35px; | |
}} | |
[class*="st-key-expert"]{{ | |
overflow-y:scroll; | |
max-height:380px; | |
}} | |
[class*="st-key-step_"] {{ | |
width:100px; | |
height:60px; | |
border-radius:50px; | |
margin-left:490px; | |
margin-bottom:20px; | |
margin-top:15px; | |
}} | |
[class*="st-key-step_1"] {{ | |
background:{background}; | |
border:2px solid {back1}; | |
padding-left:{start1}px; | |
}} | |
[class*="st-key-step_2"] {{ | |
border:2px solid {back2}; | |
background:{background2}; | |
padding-left:{start2}px; | |
}} | |
[class*="st-key-step_3"] {{ | |
border:2px solid {back3}; | |
background:{background3}; | |
padding-left:{start3}px; | |
}} | |
[class*="st-key-step_4"] {{ | |
border:2px solid {back4}; | |
background:{background4}; | |
padding-left:{start4}px; | |
}} | |
[class*="st-key-step_1"] > div.stButton > button{{ | |
background:{fill} !important; | |
border:2px solid #00e7df; | |
}} | |
[class*="st-key-step_2"] > div.stButton > button{{ | |
background:{fill2} !important; | |
border:2px solid #00e7df; | |
}} | |
[class*="st-key-step_3"] > div.stButton > button{{ | |
background:{fill3} !important; | |
border:2px solid #00e7df; | |
}} | |
[class*="st-key-step_4"] > div.stButton > button{{ | |
background:{fill4} !important; | |
border:2px solid #00e7df; | |
}} | |
[class*="st-key-step_"] > div.stButton > button{{ | |
background:#e7e7e7; | |
border:2px solid linear-gradient(145deg, #007BFF, #005FCC); | |
}} | |
[class*="st-key-step_"] > div.stButton > button:active{{ | |
border:2px solid green !important; | |
}} | |
[class*="st-key-step_"] > div.stButton > button:not(:active){{ | |
border:2px solid #00e7df !important; | |
}} | |
section[data-testid="stMain"] {{ | |
overflow:hidden !important; | |
}} | |
div[data-testid="stSlider"] {{ | |
margin-top:45px; | |
}} | |
label[data-testid="stWidgetLabel"]{{ | |
margin-left:20px !important; | |
}} | |
div[data-baseweb="slider"] {{ | |
border-radius: 30px; | |
padding-right:40px; | |
z-index: 1; | |
/* Glass effect background */ | |
backdrop-filter: blur(2px); | |
-webkit-backdrop-filter: blur(12px); | |
/* Shiny blue borders (left & right) */ | |
border-top: 2px solid rgba(255, 255, 155, 0.4); /* Light border */ | |
margin-left:13px; | |
border-bottom: 2px solid rgba(255, 255, 155, 0.4); /* Light border */ | |
}} | |
div[data-baseweb="slider"] > :nth-child(1)> div {{ | |
margin-left:20px !important; | |
margin-top:10px; | |
}} | |
div[data-testid="stSliderTickBarMin"]{{ | |
background:none !important; | |
margin-left:20px !important; | |
font-size:12px; | |
margin-bottom:5px; | |
font-family: "Times New Roman " !important; /* Font */ | |
}} | |
div[data-testid="stSliderTickBarMax"]{{ | |
background:none !important; | |
font-size:12px; | |
margin-bottom:5px; | |
font-family: "Times New Roman " !important; /* Font */ | |
}} | |
div[data-testid="stSliderThumbValue"]{{ | |
font-size:12px; | |
font-family: "Times New Roman " !important; /* Font */ | |
}} | |
div[data-testid="stProgress"]{{ | |
margin-right:25px; | |
margin-top:-70px; | |
height:10px !important; | |
}} | |
[class*="st-key-content-container-3"] {{ | |
margin-top: 50px; /* Adjust top margin */ | |
margin-left:500px !important; | |
color:orange; | |
font-size:2.2rem; | |
}} | |
div[data-testid="stForm"]{{ | |
}} | |
[class*="st-key-form-head"] {{ | |
margin-top:-50px; | |
}} | |
[class*="st-key-form-head"] img {{ | |
align-self:center; | |
width:40%; | |
margin-left:250px; | |
height:120px; | |
}} | |
[class*="st-key-form-content"] {{ | |
margin-top:-65px; | |
height:405px; | |
border-radius:35px; | |
}} | |
[class*="st-key-form-content1"] {{ | |
margin-top:5px; | |
height:405px; | |
border-radius:35px; | |
margin-bottom:15px; | |
border-top:none; | |
}} | |
[class*="st-key-currentSmoker"]>div>label>div > p {{ | |
margin-left:-20px; | |
}} | |
[class*="st-key-form-content2"] {{ | |
margin-top:5px; | |
height:405px; | |
border-radius:35px; | |
margin-bottom:15px; | |
}} | |
[class*="st-key-form-content3"] {{ | |
margin-top:5px; | |
height:405px; | |
border-radius:35px; | |
margin-bottom:15px; | |
}} | |
/* Button row styling */ | |
.button-row {{ | |
display: flex; | |
justify-content: flex-start; | |
gap: 20px; | |
margin-bottom: 20px; | |
}} | |
.custom-button:hover {{ | |
background-color: #0056b3; | |
}} | |
div.stButton > button p{{ | |
color: green !important; | |
font-weight:bold; | |
}} | |
div.stButton > button {{ | |
color: green !important; /* White text */ | |
font-family: "Times New Roman " !important; /* Font */ | |
font-size: 18px !important; /* Font size */ | |
font-weight: bold !important; /* Bold text */ | |
padding: 10px 20px; /* Padding for buttons */ | |
border: none; /* Remove border */ | |
border-radius: 35px; /* Rounded corners */ | |
transition: all 0.3s ease-in-out; /* Smooth transition */ | |
display: flex; | |
align-items: center; | |
transform: scale(1.05); /* Slightly enlarge button */ | |
transform: scale(1.1); /* Slight zoom on hover */ | |
justify-content: center; | |
}} | |
/* Hover effect */ | |
div.stButton > button:hover {{ | |
background: rgba(255, 255, 255, 0.2); | |
box-shadow: 0px 6px 12px rgba(0, 0, 0, 0.4); /* Enhanced shadow on hover */ | |
transform: scale(1.05); /* Slightly enlarge button */ | |
transform: scale(1.1); /* Slight zoom on hover */ | |
box-shadow: 0px 4px 12px rgba(255, 255, 255, 0.4); /* Glow effect */ | |
}} | |
div[data-testid="stFormSubmitButton"] button{{ | |
font-family: "Times New Roman " !important; /* Font */ | |
font-size: 18px !important; /* Font size */ | |
font-weight: bold !important; /* Bold text */ | |
padding: 10px 20px; /* Padding for buttons */ | |
border: none; /* Remove border */ | |
border-radius: 35px; /* Rounded corners */ | |
transition: all 0.3s ease-in-out; /* Smooth transition */ | |
display: flex; | |
align-items: center; | |
transform: scale(1.05); /* Slightly enlarge button */ | |
transform: scale(1.1); /* Slight zoom on hover */ | |
justify-content: center; | |
box-shadow: 0px 4px 10px rgba(0, 0, 0, 0.2); /* Shadow effect */ | |
width:110px; | |
}} | |
div[data-testid="stFormSubmitButton"] button:active{{ | |
background-color: #6dc9e4 !important; | |
}} | |
div[data-testid="stMarkdownContainer"] p {{ | |
font-family: "Times New Roman" !important; /* Elegant font for title */ | |
color:black !important; | |
}} | |
.titles{{ | |
margin-top:-60px !important; | |
margin-left:40px; | |
margin-bottom:50px; | |
text-align:center; | |
align-items:center; | |
z-index:10000; | |
position:relative; | |
font-family: "Times New Roman" !important; | |
}} | |
.header {{ | |
align-items: center; | |
gap: 20px; /* Optional: adds space between image and text */ | |
}} | |
/* Title styling */ | |
.header h1{{ | |
font-size: 1.7rem; | |
font-weight: bold; | |
margin-left: 5px; | |
/* margin-top:-100px;*/ | |
margin-bottom:10px; | |
padding: 0; | |
color: black; /* Neutral color for text */ | |
}} | |
.titles .content{{ | |
font-family: "Times New Roman" !important; /* Elegant font for title */ | |
font-size: 1rem; | |
margin-bottom:1px; | |
padding: 0; | |
color:black; /* Neutral color for text */ | |
}} | |
</style> | |
""", | |
unsafe_allow_html=True, | |
) | |
# Overlay container | |
st.markdown( | |
f""" | |
<style> | |
.logo-text-containers {{ | |
position: absolute; | |
top: -60px; | |
right: 40px; | |
background-color: rgba(255, 255, 255, 0.9); | |
padding: 15px; | |
border-radius: 12px; | |
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2); | |
z-index: 10; | |
width:80vw; | |
height:620px; | |
}} | |
.logo-text-containers img {{ | |
height: 40px; | |
right:0; | |
}} | |
.logo-text-containers h1 {{ | |
display: inline; | |
font-size: 20px; | |
vertical-align: middle; | |
}} | |
div[class*="st-key-try"] >div>button > div >p{{ | |
top: 5px; | |
font-size: 30px !important; | |
font-weight: bold !important; | |
cursor: pointer; | |
color:orange !important; | |
z-index:1000; | |
}} | |
div[class*="st-key-try"] >div>button {{ | |
height:70px !important; | |
width:250px !important; | |
background: rgba(255, 255, 255, 0.2) !important; | |
backdrop-filter: blur(10px) !important; | |
box-shadow: 0px 4px 10px rgba(0, 0, 0, 0.2); /* Shadow effect */ | |
margin-left:20px; | |
}} | |
[class*="st-key-close-btn"]:hover {{ | |
color: #f00; | |
}} | |
[class*="st-key-divider-col"] {{ | |
border-left: 3px solid rgba(255, 255, 155, 0.5); /* Light border */ | |
border-radius: 35px; /* Rounded corners */ | |
margin-top:-15px; | |
margin-left:3px; | |
}} | |
[class*="st-key-col1"] {{ | |
border-right: 3px solid rgba(255, 255, 155, 0.5); /* Light border */ | |
border-radius: 35px; /* Rounded corners */ | |
margin-left:20px; | |
margin-top:-15px; | |
}} | |
[class*="st-key-form"] >div >div >div >p {{ | |
font-weight:bold; | |
color :green !important; | |
font-size:20px; | |
}} | |
[class*="st-key-logo-text-containers"] {{ | |
margin: 10px; /* Set a margin inside the container */ | |
max-width: 100%; | |
overflow: hidden; | |
position: absolute; | |
top:-43px; | |
left:10px; | |
overflow: hidden; | |
background-color: tansparent; | |
padding: 15px; | |
border-radius: 30px; | |
padding-right:40px; | |
z-index: 1; | |
width:88vw; | |
height:660px; | |
/* Glass effect background */ | |
background: rgba(255, 255, 255, 0.15); | |
backdrop-filter: blur(12px); | |
-webkit-backdrop-filter: blur(12px); | |
/* Shiny blue borders (left & right) */ | |
border-left: 3px solid rgba(255, 255, 255, 0.9); /* Light border */ | |
border-right: 3px solid rgba(255, 255, 255, 0.9); /* Light border */ | |
}} | |
@media (max-width: 768px) {{ | |
.logo-text-container h1 {{ | |
font-size: 12px; | |
}} | |
.logo-text-container i {{ | |
font-size: 10px; | |
ma | |
}} | |
.logo-text-container img {{ | |
width: 30px; /* Adjust logo size */ | |
border-radius: 10px; /* Optional: round edges */ | |
margin-left:15px; | |
margin-top: -35px; | |
}} | |
}} | |
</style> | |
""", | |
unsafe_allow_html=True, | |
) | |
st.markdown(""" | |
<style> | |
/* Number input */ | |
input:focus { | |
/* border: 2px solid grey !important; /* change to your desired color */ | |
outline: none; | |
} | |
/* Radio buttons (kind of hacky since they use labels) */ | |
.stRadio > div[role='radiogroup'] > label:focus-within { | |
border-radius: 4px; | |
} | |
div[data-testid="stTextInputRootElement"]{ | |
border:1px solid #CCC; | |
} | |
div[data-testid="stNumberInputContainer"].focused{ | |
border:1px solid #CCC !important; | |
} | |
button[data-testid="stNumberInputStepDown"]:hover:enabled, | |
button[data-testid="stNumberInputStepDown"]:focus:enabled{ | |
background-color: #6dc9e4 !important; | |
} | |
button[data-testid="stNumberInputStepUp"]:hover:enabled, | |
button[data-testid="stNumberInputStepUp"]:focus:enabled{ | |
background-color: #6dc9e4 !important; | |
} | |
label[data-baseweb="radio"]> :nth-child(1){ | |
background-color: #6dc9e4 !important; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
st.markdown( | |
f""" <div class="logo-text-container"> | |
<img src="data:image/png;base64,{base64.b64encode(open("download.png","rb").read()).decode()}" alt="Uploaded Image"> | |
<h1>HeartCheck <span> AI </span> </h1> | |
</div> | |
""", | |
unsafe_allow_html=True, | |
) | |
st.markdown( | |
f""" <div class="titles"> | |
<div class = "header"> | |
<h1></br><span>Predict Your Risk, Protect Your Heart | |
</h1> | |
</div> | |
<div class="content"> | |
HeartCheck uses intelligent risk analysis to predict your likelihood of <br>heart disease. | |
βempowering you with personalized insights, early warnings, and lifestyle tips to keep your heart healthy and strong. | |
</div> | |
</div> | |
""", | |
unsafe_allow_html=True, | |
) | |
with st.container(key = "main"): | |
col1,col2 = st.columns([3,3]) | |
with col1: | |
with st.container(key= "side"): | |
if st.button("1",key="step_1"): | |
st.session_state.form1 = "back" | |
st.session_state.form2 = "back" | |
st.session_state.form3 = "back" | |
st.session_state.form4 = "back" | |
st.session_state.form5 = "back" | |
st.rerun() | |
if st.button("2",key="step_2"): | |
st.session_state.form2 = "back" | |
st.session_state.form3 = "back" | |
st.session_state.form4 = "back" | |
st.session_state.form5 = "back" | |
st.rerun() | |
if st.button("3",key="step_3"): | |
st.session_state.form3 = "back" | |
st.session_state.form4 = "back" | |
st.session_state.form5 = "back" | |
st.rerun() | |
if st.button("4",key="step_4"): | |
st.session_state.form4 = "back" | |
st.session_state.form5 = "back" | |
st.rerun() | |
with col2: | |
if st.session_state.form1 == "back": | |
with st.container(key="form1"): | |
st.write("π§ Step 1: Personal Info") | |
with st.container(key="form-head"): | |
st.image("icon.png") | |
with st.form( key="first"): | |
with st.container(key="form-content"): | |
# Input fields | |
st.session_state.name = st.text_input("Name", value=st.session_state.name) | |
st.session_state.age = st.number_input("Age", min_value=0, max_value=120, step=1, value=st.session_state.age) | |
st.session_state.gender = st.radio("Sex:", ["Male", "Female"], horizontal=True, index=0 if st.session_state.gender == "Male" else 1) | |
# Navigation buttons | |
col1, col2 = st.columns([4, 1]) | |
next = col2.form_submit_button("Next ") | |
if next: | |
st.session_state.form1 = "next" | |
st.rerun() | |
elif st.session_state.form1 == "next" and st.session_state.form2 == "back": | |
with st.container(key="form2"): | |
st.write("π¬ Step 2: Clinical History") | |
st.radio("Do you currently smoke?", ["Yes", "No"], horizontal=True, key="currentSmoker") | |
print(st.session_state.currentSmoker) | |
with st.form("form_step_2"): | |
with st.container(key="form-content1"): | |
# Show 'cigsPerDay' only if smoker | |
if st.session_state.currentSmoker == "Yes": | |
if st.session_state.cigsPerDay == 0: | |
st.session_state.cigsPerDay = 1 | |
else: | |
st.session_state.cigsPerDay = st.session_state.cigsPerDay | |
print(f"tessst:{st.session_state['currentSmoker']}") | |
st.session_state.cigsPerDay = st.number_input("How many cigarettes per day?", min_value=1, max_value=60, step=1,value = st.session_state.cigsPerDay) | |
else: | |
st.session_state.cigsPerDay = 0 # default to 0 if non-smoker | |
r1,r2 = st.columns([6,3]) | |
with r1: | |
if st.session_state.BPMeds == "Yes": | |
bp = 0 | |
else: | |
bp = 1 | |
st.session_state.BPMeds = st.radio("Do you take blood pressure medication?", ["Yes", "No"], horizontal=True,index = bp) | |
with r2: | |
if st.session_state.diabetes == "Yes": | |
db = 0 | |
else: | |
db = 1 | |
st.session_state.diabetes = st.radio("Do you have diabetes?", ["Yes", "No"], horizontal=True,index = db ) | |
col1, col2 = st.columns([4,1]) | |
back = col1.form_submit_button("Back") | |
if back: | |
st.session_state.form1 = "back" | |
st.rerun() | |
next = col2.form_submit_button("Next") | |
if next: | |
st.session_state.form2 = "next" | |
st.rerun() | |
elif st.session_state.form2 == "next" and st.session_state.form3 == "back": | |
with st.container(key="form2"): | |
st.write("π Step 3: Vital Signs & Cholesterol") | |
with st.form("form_step_2"): | |
with st.container(key="form-content2"): | |
# Step 3 inputs | |
st.session_state.totChol = st.number_input("Total Cholesterol (mg/dL)", min_value=100, max_value=400, step=1,value= st.session_state.totChol) | |
st.session_state.sysBP = st.number_input("Systolic Blood Pressure (mmHg)", min_value=80, max_value=250, step=1,value = st.session_state.sysBP) | |
st.session_state.diaBP = st.number_input("Diastolic Blood Pressure (mmHg)", min_value=50, max_value=150, step=1,value= st.session_state.diaBP) | |
col1, col2 = st.columns([4,1]) | |
back = col1.form_submit_button("Back") | |
if back: | |
st.session_state.form2 = "back" | |
st.rerun() | |
next = col2.form_submit_button("Next") | |
if next: | |
st.session_state.form3 = "next" | |
st.rerun() | |
elif st.session_state.form3 == "next" and st.session_state.form4 == "back": | |
with st.container(key="form3"): | |
st.write("π§ͺ Step 4: Body Metrics & Glucose") | |
with st.form("form_step_3"): | |
with st.container(key="form-content3"): | |
# Step 3 inputs | |
st.session_state.BMI = st.number_input("Body Mass Index (BMI)", min_value=10.0, max_value=60.0, step=0.1,value=st.session_state.BMI) | |
st.session_state.heartRate = st.number_input("Heart Rate (bpm)", min_value=40, max_value=200, step=1,value= st.session_state.heartRate) | |
st.session_state.glucose = st.number_input("Glucose Level (mg/dL)", min_value=50, max_value=300, step=1,value= st.session_state.glucose) | |
col1, col2 = st.columns([4,1]) | |
back = col1.form_submit_button("Back") | |
if back: | |
st.session_state.form3 = "back" | |
st.rerun() | |
next = col2.form_submit_button("predict") | |
if next: | |
st.session_state.form4 = "next" | |
st.rerun() | |
elif st.session_state.form4 == "next" and st.session_state.form5 == "back": | |
# Construct input array from collected values | |
new_data = np.array([[ | |
1 if st.session_state.gender == "Male" else 0, # gender | |
st.session_state.age, | |
1 if st.session_state.currentSmoker == "Yes" else 0, | |
float(st.session_state.cigsPerDay), | |
1.0 if st.session_state.BPMeds else 0.0, | |
1 if st.session_state.diabetes else 0, | |
st.session_state.totChol, | |
st.session_state.sysBP, | |
st.session_state.diaBP, | |
st.session_state.BMI, | |
st.session_state.heartRate, | |
st.session_state.glucose | |
]]) | |
loading_placeholder = st.empty() | |
with loading_placeholder.container(): | |
# Make prediction | |
with st.spinner("Analyzing your heart health..."): | |
st.image('load.gif', use_container_width=True) | |
time.sleep(3) # Wait for 1 second | |
# Remove the loading image | |
loading_placeholder.empty() | |
prediction = best_clf.predict(new_data) | |
prediction_proba = best_clf.predict_proba(new_data) | |
st.session_state.Risk = prediction | |
risk_percent = prediction_proba[0][1]*100 | |
risk_label = "At Risk of having a heart failure" | |
st.session_state.proba = risk_percent | |
name = st.session_state.name # Get from session or fallback | |
with st.container(key = "result"): | |
# Display result | |
st.markdown(f""" | |
<div class = "result" style="text-align: center; padding-top: 30px;"> | |
<h1 style="color: #444;">Hi {name} π, you are</h1> | |
<h1 class = "name" style="font-size: 80px; color: #0175C2; margin-top: -5px ;">{risk_percent:.2f}%</h1> | |
<h3 style="color: {'#d9534f' if prediction == 1 else '#28a745'}; margin-bottom: 10px;">{risk_label}</h3> | |
</div> | |
""", unsafe_allow_html=True) | |
st.session_state.form5 = "next" | |
if st.button("explain the result", key = "explain"): | |
st.session_state.form5 = "next" | |
st.rerun() | |
elif st.session_state.form5 == "next" : | |
def generate_stream_response(text): | |
# Yield the string one character at a time (for streaming) | |
for char in text: | |
yield char | |
time.sleep(0.02) | |
selected_model = { | |
"url": "https://router.huggingface.co/nebius/v1/chat/completions", # Replace with the Hugging Face API URL for your model | |
"model": "deepseek-ai/DeepSeek-V3" # Replace with the model name | |
} | |
task = "text-generation" | |
prompt = f""" | |
Hi! A person named {st.session_state.name} has just been assessed for heart disease risk. | |
π **Prediction**: {"High Risk" if st.session_state.Risk == 1 else "Low Risk"} | |
π **Risk Percentage**: {st.session_state.proba:.2f}% | |
π **Input Parameters**: | |
- Sex: {st.session_state.gender} | |
- Age: {st.session_state.age} | |
- Current Smoker: {st.session_state.currentSmoker} | |
- Cigarettes per Day: {st.session_state.cigsPerDay} | |
- On Blood Pressure Meds: {"Yes" if st.session_state.BPMeds else "No"} | |
- Has Diabetes: {"Yes" if st.session_state.diabetes else "No"} | |
- Total Cholesterol: {st.session_state.totChol} mg/dL | |
- Systolic BP: {st.session_state.sysBP} mmHg | |
- Diastolic BP: {st.session_state.diaBP} mmHg | |
- BMI: {st.session_state.BMI} | |
- Heart Rate: {st.session_state.heartRate} bpm | |
- Glucose: {st.session_state.glucose} mg/dL | |
π¬ Please give a personalized, kind, and easy-to-understand explanation of this result. Include practical lifestyle advice and possible early warning signs to watch for. Use an encouraging, empathetic tone.and sign with {selected_model['model']} | |
""" | |
with st.container(key = "expert"): | |
with st.spinner("Model is Analysing your Results..."): | |
result = query_huggingface_model(selected_model, prompt , input_type="text",task=task) | |
response = extract_response_content(result) | |
st.markdown(f""" | |
<div style=" | |
font-size: 18px; | |
font-weight: 600; | |
color: #0175C2; | |
margin-top: 5px; | |
margin-bottom: 20px; | |
padding: 10px 20px; | |
border-radius: 10px; | |
background: #f4faff; | |
display: flex; | |
align-items: center; | |
justify-content: center; | |
margin-left:-20px !important; | |
gap: 15px; | |
font-family: 'Times New Roman', Times, serif; | |
"> | |
<img src="data:image/png;base64,{base64.b64encode(open("gem.png","rb").read()).decode()}" alt="Uploaded Image"width="40" height="40" style="margin-right: 10px;" > | |
Personalized Heart Health Advice | |
</div> | |
""", unsafe_allow_html=True) | |
st.write_stream(generate_stream_response(response)) # This will stream the text one character at a time | |