Spaces:
Runtime error
Runtime error
import gradio as gr | |
import whisper | |
from transformers import pipeline | |
model = whisper.load_model("base") | |
sentiment_analysis = pipeline("sentiment-analysis", framework="pt", model="SamLowe/roberta-base-go_emotions") | |
import gradio as gr | |
import whisper | |
from transformers import pipeline | |
import gradio as gr | |
import pandas as pd | |
from io import StringIO | |
import os,re | |
from langchain.llms import OpenAI | |
import pandas as pd | |
from langchain.document_loaders import UnstructuredPDFLoader | |
from langchain.prompts import PromptTemplate | |
from langchain.chains import LLMChain | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.vectorstores import Chroma | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.llms import OpenAI | |
from langchain.chains import RetrievalQA | |
from langchain.document_loaders import TextLoader | |
from langchain.prompts import PromptTemplate | |
from langchain.callbacks.stdout import StdOutCallbackHandler | |
from langchain.chat_models.openai import ChatOpenAI | |
from langchain.prompts.prompt import PromptTemplate | |
from langchain.llms import OpenAI | |
from langchain.prompts import PromptTemplate | |
from langchain.chains import LLMChain | |
model = whisper.load_model("base") | |
sentiment_analysis = pipeline("sentiment-analysis", framework="pt", model="SamLowe/roberta-base-go_emotions") | |
def predict(text): | |
# loader = UnstructuredPDFLoader(file_obj.orig_name) | |
# data = loader.load() | |
# text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) | |
# texts = text_splitter.split_documents(data) | |
# embeddings = OpenAIEmbeddings() | |
# docsearch = Chroma.from_documents(texts, embeddings) | |
# qa = RetrievalQA.from_chain_type(llm=OpenAI(), chain_type="map_reduce", retriever=docsearch.as_retriever()) | |
prompt_template = """Ignore all previous instructions. You are the world's hearing aid company markerting agent. | |
I am going to give you a text of a customer. Analyze it and you have 4 products in list which you have to suggest to the customer: | |
ampli-mini it is mainly works for Maximum comfort and discretion, ampli-connect it is mainly works for Connected to the things you love, | |
ampli-energy it is mainly works for Full of energy, like you, ampli-easy it is mainly works for Allow yourself to hear well. | |
You can also be creative, funny, or show emotions at time. | |
also share the book a appointment link of your company https://www.amplifon.com/uk/book-an-appointment | |
Question: {question} | |
Product details:""" | |
prompt_template_lang = """ | |
You are the world's best languages translator. Will give you some text or paragraph which you have to convert into Tamil, Hindi, Kannada | |
and French. | |
Input Text: {text} | |
Tamil: | |
Hindi: | |
Kannada: | |
French: | |
""" | |
PROMPT = PromptTemplate( | |
template=prompt_template, input_variables=["question"] | |
) | |
PROMPT_lang = PromptTemplate( | |
template=prompt_template_lang, input_variables=["text"] | |
) | |
# chain_type_kwargs = {"prompt": PROMPT} | |
# qa = RetrievalQA.from_chain_type(llm=OpenAI(), chain_type="stuff", retriever=docsearch.as_retriever(), chain_type_kwargs=chain_type_kwargs) | |
#Actually, Hi, how are you doing? Actually, I am looking for the hearing aid for my grandfather. He has like age around 62, 65 year old and one of the like major thing that I am looking for the hearing aid product which is like maximum comfort. So if you have anything in that category, so can you please tell me? Thank you. | |
llm = OpenAI() | |
# prompt = PromptTemplate( | |
# input_variables=["product"], | |
# template="What is a good name for a company that makes {product}?", | |
# ) | |
chain = LLMChain(llm=llm, prompt=PROMPT) | |
chain_lang = LLMChain(llm=llm, prompt=PROMPT_lang) | |
resp = chain.run(question=text) | |
resp_lang = chain_lang.run(text=resp) | |
# print(resp) | |
# response = [] | |
# category = ["ampli-mini", "ampli-connect", "ampli-energy", "ampli-easy"] | |
# for value in category: | |
# response.append({value:ai(qa, value)}) | |
# html_output = "" | |
# for obj in response: | |
# # Loop through the key-value pairs in the object | |
# for key, value in obj.items(): | |
# value = re.sub(r'[\d\.]+', '', value) | |
# value_list = value.strip().split('\n') | |
# value_html = "<ol>" | |
# for item in value_list: | |
# value_html += "<li>{}</li>".format(item.strip()) | |
# value_html += "</ol>" | |
# html_output += "<h2>{}</h2>".format(key) | |
# html_output += value_html | |
return [resp, resp_lang] | |
# def ai(qa,category): | |
# query = "please suggest "+ category +" interview questions" | |
# data = list(filter(None, qa.run(query).split('\n'))) | |
# results = list(filter(lambda x: x != ' ', data)) | |
# results = "\n".join(results) | |
# return results | |
def analyze_sentiment(text): | |
results = sentiment_analysis(text) | |
sentiment_results = {result['label']: result['score'] for result in results} | |
return sentiment_results | |
def get_sentiment_emoji(sentiment): | |
# Define the emojis corresponding to each sentiment | |
emoji_mapping = { | |
"disappointment": "๐", | |
"sadness": "๐ข", | |
"annoyance": "๐ ", | |
"neutral": "๐", | |
"disapproval": "๐", | |
"realization": "๐ฎ", | |
"nervousness": "๐ฌ", | |
"approval": "๐", | |
"joy": "๐", | |
"anger": "๐ก", | |
"embarrassment": "๐ณ", | |
"caring": "๐ค", | |
"remorse": "๐", | |
"disgust": "๐คข", | |
"grief": "๐ฅ", | |
"confusion": "๐", | |
"relief": "๐", | |
"desire": "๐", | |
"admiration": "๐", | |
"optimism": "๐", | |
"fear": "๐จ", | |
"love": "โค๏ธ", | |
"excitement": "๐", | |
"curiosity": "๐ค", | |
"amusement": "๐", | |
"surprise": "๐ฒ", | |
"gratitude": "๐", | |
"pride": "๐ฆ" | |
} | |
return emoji_mapping.get(sentiment, "") | |
def display_sentiment_results(sentiment_results, option): | |
sentiment_text = "" | |
for sentiment, score in sentiment_results.items(): | |
emoji = get_sentiment_emoji(sentiment) | |
if option == "Sentiment Only": | |
sentiment_text += f"{sentiment} {emoji}\n" | |
elif option == "Sentiment + Score": | |
sentiment_text += f"{sentiment} {emoji}: {score}\n" | |
return sentiment_text | |
def inference(audio, sentiment_option): | |
audio = whisper.load_audio(audio) | |
audio = whisper.pad_or_trim(audio) | |
mel = whisper.log_mel_spectrogram(audio).to(model.device) | |
_, probs = model.detect_language(mel) | |
lang = max(probs, key=probs.get) | |
options = whisper.DecodingOptions(fp16=False) | |
result = whisper.decode(model, mel, options) | |
sentiment_results = analyze_sentiment(result.text) | |
print(result.text) | |
prediction = predict(result.text) | |
sentiment_output = display_sentiment_results(sentiment_results, sentiment_option) | |
return lang.upper(), result.text, sentiment_output, prediction[0], prediction[1] | |
title = """<h1 align="center">๐ค Multilingual ASR ๐ฌ</h1>""" | |
description = """ | |
๐ป This demo showcases a general-purpose speech recognition model called Whisper. It is trained on a large dataset of diverse audio and supports multilingual speech recognition, speech translation, and language identification tasks.<br><br> | |
<br> | |
โ๏ธ Components of the tool:<br> | |
<br> | |
- Real-time multilingual speech recognition<br> | |
- Language identification<br> | |
- Sentiment analysis of the transcriptions<br> | |
<br> | |
๐ฏ The sentiment analysis results are provided as a dictionary with different emotions and their corresponding scores.<br> | |
<br> | |
๐ The sentiment analysis results are displayed with emojis representing the corresponding sentiment.<br> | |
<br> | |
โ The higher the score for a specific emotion, the stronger the presence of that emotion in the transcribed text.<br> | |
<br> | |
โ Use the microphone for real-time speech recognition.<br> | |
<br> | |
โก๏ธ The model will transcribe the audio and perform sentiment analysis on the transcribed text.<br> | |
""" | |
custom_css = """ | |
#banner-image { | |
display: block; | |
margin-left: auto; | |
margin-right: auto; | |
} | |
#chat-message { | |
font-size: 14px; | |
min-height: 300px; | |
} | |
""" | |
block = gr.Blocks(css=custom_css) | |
with block: | |
gr.HTML(title) | |
with gr.Row(): | |
with gr.Column(): | |
gr.HTML(description) | |
with gr.Group(): | |
with gr.Box(): | |
audio = gr.Audio( | |
label="Input Audio", | |
show_label=False, | |
source="microphone", | |
type="filepath" | |
) | |
sentiment_option = gr.Radio( | |
choices=["Sentiment Only", "Sentiment + Score"], | |
label="Select an option", | |
default="Sentiment Only" | |
) | |
btn = gr.Button("Transcribe") | |
lang_str = gr.Textbox(label="Language") | |
text = gr.Textbox(label="Transcription") | |
sentiment_output = gr.Textbox(label="Sentiment Analysis Results", output=True) | |
prediction = gr.Textbox(label="Prediction") | |
language_translation = gr.Textbox(label="Language Translation") | |
btn.click(inference, inputs=[audio, sentiment_option], outputs=[lang_str, text, sentiment_output, prediction,language_translation]) | |
gr.HTML(''' | |
<div class="footer"> | |
<p>Model by <a href="https://github.com/openai/whisper" style="text-decoration: underline;" target="_blank">OpenAI</a> | |
</p> | |
</div> | |
''') | |
block.launch() |