File size: 14,867 Bytes
e26350a f5a33e6 e26350a 789c580 f5a33e6 46882f0 f5a33e6 e26350a 789c580 e26350a 789c580 e26350a f5a33e6 e26350a f5a33e6 e26350a f5a33e6 e26350a f5a33e6 e26350a f5a33e6 e26350a f5a33e6 e26350a f5a33e6 e26350a f5a33e6 e26350a f5a33e6 e26350a f5a33e6 e26350a f5a33e6 e26350a f5a33e6 789c580 f5a33e6 789c580 e26350a f5a33e6 e26350a f5a33e6 e26350a f5a33e6 e26350a f5a33e6 e26350a f5a33e6 e26350a f5a33e6 e26350a f5a33e6 e26350a f5a33e6 789c580 f5a33e6 789c580 f5a33e6 e26350a f5a33e6 e26350a f5a33e6 789c580 f5a33e6 789c580 f5a33e6 789c580 e26350a f5a33e6 789c580 e26350a 789c580 f5a33e6 789c580 f5a33e6 789c580 e26350a f5a33e6 789c580 46882f0 f5a33e6 789c580 f5a33e6 789c580 e26350a f5a33e6 789c580 f5a33e6 789c580 f5a33e6 789c580 e26350a 789c580 e26350a 46882f0 e26350a f5a33e6 789c580 e26350a 789c580 070fae0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
import gradio as gr
from PIL import Image, ImageDraw
import numpy as np
import math
# Constants
BOARD_SIZE = 9
CELL_SIZE = 50
PIECE_RADIUS = 20
EMPTY = 0
WHITE_SOLDIER = 1
BLACK_SOLDIER = 2
KING = 3
CASTLE = (4, 4)
CAMPS = [
(0,3), (0,4), (0,5), (1,4), # Top camp
(8,3), (8,4), (8,5), (7,4), # Bottom camp
(3,0), (4,0), (5,0), (4,1), # Left camp
(3,8), (4,8), (5,8), (4,7) # Right camp
]
ESCAPES = [(i,j) for i in [0,8] for j in range(BOARD_SIZE)] + [(i,j) for j in [0,8] for i in range(BOARD_SIZE) if (i,j) not in CAMPS]
COLORS = {
'empty': (255, 255, 255),
'castle': (128, 128, 128),
'camp': (139, 69, 19),
'escape': (0, 255, 0),
'white': (255, 255, 255),
'black': (0, 0, 0),
'king': (255, 215, 0),
'highlight': (255, 255, 0)
}
# Game state class
class TablutState:
def __init__(self):
self.board = np.zeros((BOARD_SIZE, BOARD_SIZE), dtype=int)
self.turn = 'WHITE'
self.black_in_camps = set(CAMPS)
self.setup_initial_position()
self.move_history = []
def setup_initial_position(self):
self.board[4, 4] = KING
white_positions = [(3,4), (4,3), (4,5), (5,4), (2,4), (4,2), (4,6), (6,4)]
for pos in white_positions:
self.board[pos] = WHITE_SOLDIER
for pos in CAMPS:
self.board[pos] = BLACK_SOLDIER
def copy(self):
new_state = TablutState()
new_state.board = self.board.copy()
new_state.turn = self.turn
new_state.black_in_camps = self.black_in_camps.copy()
new_state.move_history = self.move_history.copy()
return new_state
# Utility functions
def pos_to_coord(pos):
row, col = pos
return f"{chr(ord('A') + col)}{row + 1}"
def is_adjacent_to_castle(pos):
x, y = pos
cx, cy = CASTLE
return (abs(x - cx) == 1 and y == cy) or (abs(y - cy) == 1 and x == cx)
def get_friendly_pieces(turn):
return [WHITE_SOLDIER, KING] if turn == 'WHITE' else [BLACK_SOLDIER]
def manhattan_distance(pos1, pos2):
return abs(pos1[0] - pos2[0]) + abs(pos1[1] - pos2[1])
# Game logic functions
def is_valid_move(state, from_pos, to_pos):
if from_pos == to_pos:
return False
piece = state.board[from_pos]
if state.turn == 'WHITE' and piece not in [WHITE_SOLDIER, KING]:
return False
if state.turn == 'BLACK' and piece != BLACK_SOLDIER:
return False
if state.board[to_pos] != EMPTY:
return False
from_row, from_col = from_pos
to_row, to_col = to_pos
if from_row != to_row and from_col != to_col:
return False
if from_row == to_row:
step = 1 if to_col > from_col else -1
for col in range(from_col + step, to_col, step):
if state.board[from_row, col] != EMPTY:
return False
else:
step = 1 if to_row > from_row else -1
for row in range(from_row + step, to_row, step):
if state.board[row, from_col] != EMPTY:
return False
if to_pos == CASTLE and piece != KING:
return False
if to_pos in CAMPS:
if state.turn == 'WHITE' or (state.turn == 'BLACK' and from_pos not in state.black_in_camps):
return False
return True
def get_legal_moves(state, from_pos):
piece = state.board[from_pos]
if not piece or (state.turn == 'WHITE' and piece not in [WHITE_SOLDIER, KING]) or \
(state.turn == 'BLACK' and piece != BLACK_SOLDIER):
return []
row, col = from_pos
moves = []
for r in range(BOARD_SIZE):
if r != row:
to_pos = (r, col)
if is_valid_move(state, from_pos, to_pos):
moves.append(to_pos)
for c in range(BOARD_SIZE):
if c != col:
to_pos = (row, c)
if is_valid_move(state, from_pos, to_pos):
moves.append(to_pos)
return moves
def is_soldier_captured(state, pos, friendly):
x, y = pos
friendly_pieces = get_friendly_pieces(friendly)
if y > 0 and y < BOARD_SIZE - 1:
if state.board[x, y-1] in friendly_pieces and state.board[x, y+1] in friendly_pieces:
return True
if x > 0 and x < BOARD_SIZE - 1:
if state.board[x-1, y] in friendly_pieces and state.board[x+1, y] in friendly_pieces:
return True
if is_adjacent_to_castle(pos):
cx, cy = CASTLE
if x == cx:
if y < cy and y > 0 and state.board[x, y-1] in friendly_pieces:
return True
elif y > cy and y < BOARD_SIZE - 1 and state.board[x, y+1] in friendly_pieces:
return True
elif y == cy:
if x < cx and x > 0 and state.board[x-1, y] in friendly_pieces:
return True
elif x > cx and x < BOARD_SIZE - 1 and state.board[x+1, y] in friendly_pieces:
return True
if pos in CAMPS:
return False
for camp in CAMPS:
cx, cy = camp
if (x, y) == (cx + 1, cy) and 0 <= cx < BOARD_SIZE and state.board[cx, cy] in friendly_pieces + [EMPTY]:
return True
elif (x, y) == (cx - 1, cy) and 0 <= cx < BOARD_SIZE and state.board[cx, cy] in friendly_pieces + [EMPTY]:
return True
elif (x, y) == (cx, cy + 1) and 0 <= cy < BOARD_SIZE and state.board[cx, cy] in friendly_pieces + [EMPTY]:
return True
elif (x, y) == (cx, cy - 1) and 0 <= cy < BOARD_SIZE and state.board[cx, cy] in friendly_pieces + [EMPTY]:
return True
return False
def is_king_captured(state, pos):
x, y = pos
if pos == CASTLE:
return all(state.board[x + dx, y + dy] == BLACK_SOLDIER for dx, dy in [(-1,0), (1,0), (0,-1), (0,1)]
if 0 <= x + dx < BOARD_SIZE and 0 <= y + dy < BOARD_SIZE)
elif is_adjacent_to_castle(pos):
cx, cy = CASTLE
dx = cx - x
dy = cy - y
free_directions = [d for d in [(-1,0), (1,0), (0,-1), (0,1)] if d != (dx, dy)]
return all(state.board[x + d[0], y + d[1]] == BLACK_SOLDIER for d in free_directions
if 0 <= x + d[0] < BOARD_SIZE and 0 <= y + d[1] < BOARD_SIZE)
else:
return is_soldier_captured(state, pos, 'BLACK')
def apply_move(state, from_pos, to_pos):
new_state = state.copy()
piece = new_state.board[from_pos]
new_state.board[to_pos] = piece
new_state.board[from_pos] = EMPTY
if new_state.turn == 'BLACK' and from_pos in new_state.black_in_camps and to_pos not in CAMPS:
new_state.black_in_camps.discard(from_pos)
captures = []
opponent = 'BLACK' if new_state.turn == 'WHITE' else 'WHITE'
for x in range(BOARD_SIZE):
for y in range(BOARD_SIZE):
if new_state.board[x, y] == (WHITE_SOLDIER if opponent == 'WHITE' else BLACK_SOLDIER):
if is_soldier_captured(new_state, (x, y), new_state.turn):
captures.append((x, y))
if opponent == 'WHITE':
king_pos = find_king_position(new_state)
if king_pos and is_king_captured(new_state, king_pos):
captures.append(king_pos)
for pos in captures:
new_state.board[pos] = EMPTY
new_state.turn = 'BLACK' if new_state.turn == 'WHITE' else 'WHITE'
board_tuple = tuple(new_state.board.flatten())
new_state.move_history.append(board_tuple)
return new_state
def find_king_position(state):
for x in range(BOARD_SIZE):
for y in range(BOARD_SIZE):
if state.board[x, y] == KING:
return (x, y)
return None
def check_game_status(state):
king_pos = find_king_position(state)
if king_pos is None:
return "BLACK WINS"
if king_pos in ESCAPES:
return "WHITE WINS"
pieces = [(x, y) for x in range(BOARD_SIZE) for y in range(BOARD_SIZE) if
(state.turn == 'WHITE' and state.board[x, y] in [WHITE_SOLDIER, KING]) or
(state.turn == 'BLACK' and state.board[x, y] == BLACK_SOLDIER)]
has_moves = any(get_legal_moves(state, pos) for pos in pieces)
if not has_moves:
return "BLACK WINS" if state.turn == 'WHITE' else "WHITE WINS"
if state.move_history.count(tuple(state.board.flatten())) >= 2:
return "DRAW"
return "CONTINUE"
# AI implementation
def evaluate_state(state):
status = check_game_status(state)
if status == "WHITE WINS":
return 1000
elif status == "BLACK WINS":
return -1000
elif status == "DRAW":
return 0
king_pos = find_king_position(state)
if not king_pos:
return -1000
min_escape_dist = min(manhattan_distance(king_pos, e) for e in ESCAPES)
white_pieces = sum(1 for x in range(BOARD_SIZE) for y in range(BOARD_SIZE) if state.board[x, y] == WHITE_SOLDIER)
black_pieces = sum(1 for x in range(BOARD_SIZE) for y in range(BOARD_SIZE) if state.board[x, y] == BLACK_SOLDIER)
if state.turn == 'WHITE':
return -min_escape_dist * 10 + white_pieces * 5 - black_pieces * 3
else:
return min_escape_dist * 10 - white_pieces * 3 + black_pieces * 5
def minimax(state, depth, alpha, beta, maximizing_player):
if depth == 0 or check_game_status(state) != "CONTINUE":
return evaluate_state(state), None
if maximizing_player:
max_eval = -math.inf
best_move = None
pieces = [(x, y) for x in range(BOARD_SIZE) for y in range(BOARD_SIZE) if state.board[x, y] == BLACK_SOLDIER]
for from_pos in pieces:
for to_pos in get_legal_moves(state, from_pos):
new_state = apply_move(state, from_pos, to_pos)
eval_score, _ = minimax(new_state, depth - 1, alpha, beta, False)
if eval_score > max_eval:
max_eval = eval_score
best_move = (from_pos, to_pos)
alpha = max(alpha, eval_score)
if beta <= alpha:
break
return max_eval, best_move
else:
min_eval = math.inf
best_move = None
pieces = [(x, y) for x in range(BOARD_SIZE) for y in range(BOARD_SIZE) if state.board[x, y] in [WHITE_SOLDIER, KING]]
for from_pos in pieces:
for to_pos in get_legal_moves(state, from_pos):
new_state = apply_move(state, from_pos, to_pos)
eval_score, _ = minimax(new_state, depth - 1, alpha, beta, True)
if eval_score < min_eval:
min_eval = eval_score
best_move = (from_pos, to_pos)
beta = min(beta, eval_score)
if beta <= alpha:
break
return min_eval, best_move
def ai_move(state):
if state.turn != 'BLACK':
return state, "Not AI's turn"
depth = 3
_, move = minimax(state, depth, -math.inf, math.inf, True)
if move:
from_pos, to_pos = move
new_state = apply_move(state, from_pos, to_pos)
return new_state, f"AI moved from {pos_to_coord(from_pos)} to {pos_to_coord(to_pos)}"
return state, "AI has no moves"
# Board visualization
def generate_board_image(state, selected_pos=None):
img = Image.new('RGB', (BOARD_SIZE * CELL_SIZE, BOARD_SIZE * CELL_SIZE), color=COLORS['empty'])
draw = ImageDraw.Draw(img)
for i in range(BOARD_SIZE + 1):
draw.line([(i * CELL_SIZE, 0), (i * CELL_SIZE, BOARD_SIZE * CELL_SIZE)], fill=(0,0,0), width=1)
draw.line([(0, i * CELL_SIZE), (BOARD_SIZE * CELL_SIZE, i * CELL_SIZE)], fill=(0,0,0), width=1)
for x in range(BOARD_SIZE):
for y in range(BOARD_SIZE):
pos = (x, y)
fill = COLORS['empty']
if pos == CASTLE:
fill = COLORS['castle']
elif pos in CAMPS:
fill = COLORS['camp']
elif pos in ESCAPES:
fill = COLORS['escape']
if pos == selected_pos:
fill = COLORS['highlight']
draw.rectangle([(y * CELL_SIZE, x * CELL_SIZE), ((y + 1) * CELL_SIZE, (x + 1) * CELL_SIZE)], fill=fill)
for x in range(BOARD_SIZE):
for y in range(BOARD_SIZE):
piece = state.board[x, y]
if piece != EMPTY:
center = (y * CELL_SIZE + CELL_SIZE // 2, x * CELL_SIZE + CELL_SIZE // 2)
color = COLORS['white'] if piece == WHITE_SOLDIER else COLORS['black'] if piece == BLACK_SOLDIER else COLORS['king']
draw.ellipse([(center[0] - PIECE_RADIUS, center[1] - PIECE_RADIUS),
(center[0] + PIECE_RADIUS, center[1] + PIECE_RADIUS)], fill=color, outline=(0,0,0))
for i in range(BOARD_SIZE):
draw.text((5, i * CELL_SIZE + CELL_SIZE // 2 - 5), str(BOARD_SIZE - i), fill=(0,0,0))
draw.text((i * CELL_SIZE + CELL_SIZE // 2 - 5, BOARD_SIZE * CELL_SIZE - 15), chr(ord('A') + i), fill=(0,0,0))
return img
# Gradio interface functions
def click_board(state, selected_pos, evt: gr.SelectData):
if state.turn != 'WHITE':
return state, "It's the AI's turn", generate_board_image(state), selected_pos
y = evt.index[0] // CELL_SIZE # Image coordinates (x, y) map to board (row, col)
x = evt.index[1] // CELL_SIZE
pos = (y, x)
if selected_pos is None:
if state.board[pos] in [WHITE_SOLDIER, KING]:
return state, f"Selected {pos_to_coord(pos)}", generate_board_image(state, pos), pos
else:
return state, "Select a White piece or King", generate_board_image(state), None
else:
if is_valid_move(state, selected_pos, pos):
new_state = apply_move(state, selected_pos, pos)
status = check_game_status(new_state)
if status != "CONTINUE":
return new_state, status, generate_board_image(new_state), None
ai_state, ai_message = ai_move(new_state)
final_status = check_game_status(ai_state)
message = f"Your move to {pos_to_coord(pos)}. {ai_message}. {final_status if final_status != 'CONTINUE' else ''}"
return ai_state, message, generate_board_image(ai_state), None
else:
return state, "Invalid move", generate_board_image(state), None
def new_game():
state = TablutState()
return state, "New game started. Your turn (White).", generate_board_image(state), None
# Define Gradio interface
demo = gr.Blocks(title="Tablut Game")
with demo:
state = gr.State()
selected_pos = gr.State(value=None)
board_image = gr.Image(label="Board", type="pil")
message_label = gr.Label(label="Message")
new_game_button = gr.Button("New Game")
board_image.select(fn=click_board, inputs=[state, selected_pos], outputs=[state, message_label, board_image, selected_pos])
new_game_button.click(fn=new_game, outputs=[state, message_label, board_image, selected_pos])
demo.load(fn=new_game, outputs=[state, message_label, board_image, selected_pos])
demo.launch() |