Spaces:
Running
Running
Carlo Moro
commited on
Commit
·
b4f77f4
1
Parent(s):
a91104a
Simplifying code
Browse files- app.py +13 -159
- requirements.txt +1 -15
app.py
CHANGED
@@ -1,166 +1,15 @@
|
|
1 |
-
from
|
2 |
-
from sklearn.decomposition import LatentDirichletAllocation
|
3 |
-
import tiktoken, nltk, numpy as np, fasttext, pickle, re
|
4 |
-
from minivectordb.embedding_model import EmbeddingModel
|
5 |
-
from sklearn.metrics.pairwise import cosine_similarity
|
6 |
-
from nltk.tokenize import sent_tokenize
|
7 |
import gradio as gr
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
langdetect_model = fasttext.load_model('lid.176.ftz')
|
14 |
-
embedding_model = EmbeddingModel(onnx_model_cpu_core_count=2)
|
15 |
-
english_stopwords = pickle.load(open("en_stopwords.pkl", "rb"))
|
16 |
-
portuguese_stopwords = pickle.load(open("pt_stopwords.pkl", "rb"))
|
17 |
-
tokenizer = tiktoken.encoding_for_model("gpt-4")
|
18 |
-
|
19 |
-
def count_tokens_tiktoken(text):
|
20 |
-
return len(tokenizer.encode(text))
|
21 |
-
|
22 |
-
def detect_language(text):
|
23 |
-
detected_lang = langdetect_model.predict(text.replace('\n', ' '), k=1)[0][0]
|
24 |
-
return 'pt' if (str(detected_lang) == '__label__pt' or str(detected_lang) == 'portuguese') else 'en'
|
25 |
-
|
26 |
-
def clean_and_standardize_text(text):
|
27 |
-
# 1. Standardize spacing around punctuation
|
28 |
-
text = re.sub(r'\s([.,;:!?])\s', r'\1 ', text)
|
29 |
-
|
30 |
-
# 2. Remove extra spaces
|
31 |
-
text = re.sub(r'\s+', ' ', text).strip()
|
32 |
-
|
33 |
-
# 3. Capitalize sentences
|
34 |
-
sentences = sent_tokenize(text)
|
35 |
-
text = '. '.join(sentence.capitalize() for sentence in sentences)
|
36 |
-
|
37 |
-
# 4. Standardize number formatting
|
38 |
-
text = re.sub(r'(\d+)\s+(\d+)', r'\1.\2', text)
|
39 |
-
|
40 |
-
# 5. Ensure proper spacing after closing parentheses
|
41 |
-
text = re.sub(r'\)\s*([a-zA-Z])', r') \1', text)
|
42 |
-
|
43 |
-
# 6. Preserve bullet points
|
44 |
-
text = re.sub(r'•\s*', '• ', text)
|
45 |
-
|
46 |
-
# 7. Preserve numbered lists
|
47 |
-
text = re.sub(r'(\d+)\.\s*', r'\1. ', text)
|
48 |
-
|
49 |
-
# 8. Standardize date formatting
|
50 |
-
text = re.sub(r'(\d{2})\s+(\d{2})\s+(\d{4})', r'\1/\2/\3', text)
|
51 |
-
|
52 |
-
# 9. Remove extra periods
|
53 |
-
text = re.sub(r'\.\s+\.', '. ', text)
|
54 |
-
|
55 |
-
# 10. Remove spacing around parentheses
|
56 |
-
text = re.sub(r'\(\s*', '(', text)
|
57 |
-
text = re.sub(r'\s*\)', ')', text)
|
58 |
-
|
59 |
-
# 11. Improve spacing around punctuations
|
60 |
-
while ' .' in text:
|
61 |
-
text = text.replace(' .', '.')
|
62 |
-
|
63 |
-
while '..' in text:
|
64 |
-
text = text.replace('..', '.')
|
65 |
-
|
66 |
-
while ' ' in text:
|
67 |
-
text = text.replace(' ', ' ')
|
68 |
-
|
69 |
-
text = text.replace(' :', ':')
|
70 |
-
text = text.replace('- -', '-')
|
71 |
-
text = text.replace('. -', '.')
|
72 |
-
|
73 |
-
# 12. Detect two punctuation marks in a row, keeping the last
|
74 |
-
text = re.sub(r'([.,]){2,}', r'\1', text)
|
75 |
-
text = re.sub(r'(?<=[:.])[:.]+', '', text)
|
76 |
-
|
77 |
-
return text
|
78 |
-
|
79 |
-
def semantic_compress_text(full_text, compression_rate=0.7, num_topics=5):
|
80 |
-
def calculate_similarity(embed1, embed2):
|
81 |
-
return cosine_similarity([embed1], [embed2])[0][0]
|
82 |
-
|
83 |
-
def create_lda_model(texts, stopwords):
|
84 |
-
vectorizer = CountVectorizer(stop_words=stopwords)
|
85 |
-
doc_term_matrix = vectorizer.fit_transform(texts)
|
86 |
-
lda = LatentDirichletAllocation(n_components=num_topics, random_state=42)
|
87 |
-
lda.fit(doc_term_matrix)
|
88 |
-
return lda, vectorizer
|
89 |
-
|
90 |
-
def get_topic_distribution(text, lda, vectorizer):
|
91 |
-
vec = vectorizer.transform([text])
|
92 |
-
return lda.transform(vec)[0]
|
93 |
-
|
94 |
-
def sentence_importance(sentence, doc_embedding, lda_model, vectorizer, stopwords):
|
95 |
-
sentence_embedding = embedding_model.extract_embeddings(sentence)
|
96 |
-
semantic_similarity = calculate_similarity(doc_embedding, sentence_embedding)
|
97 |
-
|
98 |
-
topic_dist = get_topic_distribution(sentence, lda_model, vectorizer)
|
99 |
-
topic_importance = np.max(topic_dist)
|
100 |
-
|
101 |
-
# Calculate lexical diversity
|
102 |
-
words = sentence.split()
|
103 |
-
unique_words = set([word.lower() for word in words if word.lower() not in stopwords])
|
104 |
-
lexical_diversity = len(unique_words) / len(words) if words else 0
|
105 |
-
|
106 |
-
# Combine factors
|
107 |
-
importance = (0.6 * semantic_similarity) + (0.3 * topic_importance) + (0.2 * lexical_diversity)
|
108 |
-
return importance
|
109 |
-
|
110 |
-
# Split the text into sentences
|
111 |
-
sentences = sent_tokenize(full_text)
|
112 |
-
final_sentences = []
|
113 |
-
for s in sentences:
|
114 |
-
broken_sentences = s.split('\n')
|
115 |
-
final_sentences.extend(broken_sentences)
|
116 |
-
sentences = final_sentences
|
117 |
-
|
118 |
-
text_lang = detect_language(full_text)
|
119 |
-
|
120 |
-
# Create LDA model
|
121 |
-
lda_model, vectorizer = create_lda_model(sentences, portuguese_stopwords if text_lang == 'pt' else english_stopwords)
|
122 |
-
|
123 |
-
# Get document-level embedding
|
124 |
-
doc_embedding = embedding_model.extract_embeddings(full_text)
|
125 |
-
|
126 |
-
# Calculate importance for each sentence
|
127 |
-
sentence_scores = [(sentence, sentence_importance(sentence, doc_embedding, lda_model, vectorizer, portuguese_stopwords if text_lang == 'pt' else english_stopwords))
|
128 |
-
for sentence in sentences]
|
129 |
-
|
130 |
-
# Sort sentences by importance
|
131 |
-
sorted_sentences = sorted(sentence_scores, key=lambda x: x[1], reverse=True)
|
132 |
-
|
133 |
-
# Determine how many words to keep
|
134 |
-
total_words = sum(len(sentence.split()) for sentence in sentences)
|
135 |
-
target_words = int(total_words * compression_rate)
|
136 |
-
|
137 |
-
# Reconstruct the compressed text
|
138 |
-
compressed_text = []
|
139 |
-
current_words = 0
|
140 |
-
for sentence, _ in sorted_sentences:
|
141 |
-
sentence_words = len(sentence.split())
|
142 |
-
if current_words + sentence_words <= target_words:
|
143 |
-
compressed_text.append(sentence)
|
144 |
-
current_words += sentence_words
|
145 |
-
else:
|
146 |
-
break
|
147 |
-
|
148 |
-
# Reorder sentences to maintain original flow
|
149 |
-
compressed_text.sort(key=lambda x: sentences.index(x))
|
150 |
-
|
151 |
-
joined_compressed_text = ' '.join(compressed_text)
|
152 |
-
joined_compressed_text_cleaned = clean_and_standardize_text(joined_compressed_text)
|
153 |
-
return joined_compressed_text_cleaned
|
154 |
-
|
155 |
-
async def predict(text, word_reduction_factor):
|
156 |
-
if len(text.split()) > 5000:
|
157 |
-
return "Text is too long for this demo. Please provide a text with less than 5000 words."
|
158 |
|
159 |
if word_reduction_factor is None:
|
160 |
word_reduction_factor = 0.5
|
161 |
|
162 |
-
compressed =
|
163 |
-
perc_reduction = round(100 - (
|
164 |
|
165 |
return f"{compressed}\n\nToken Reduction: {perc_reduction}%"
|
166 |
|
@@ -182,13 +31,18 @@ reduction_factor = gr.Slider(
|
|
182 |
interactive=True,
|
183 |
label="Reduction Factor"
|
184 |
)
|
|
|
185 |
# Create the gradio interface
|
186 |
gr.Interface(
|
187 |
fn=predict,
|
188 |
-
inputs=[
|
|
|
|
|
|
|
|
|
189 |
outputs=[gr.Textbox(label="Compressed Text")],
|
190 |
title=gradio_title,
|
191 |
description=gradio_description,
|
192 |
examples=gradio_examples,
|
193 |
-
|
194 |
).launch()
|
|
|
1 |
+
from compressor.semantic import compress_text, count_tokens
|
|
|
|
|
|
|
|
|
|
|
2 |
import gradio as gr
|
3 |
|
4 |
+
async def predict(text, word_reduction_factor, reference_text_steering):
|
5 |
+
if len(text.split()) > 10000:
|
6 |
+
return "Text is too long for this demo. Please provide a text with less than 10000 words."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
if word_reduction_factor is None:
|
9 |
word_reduction_factor = 0.5
|
10 |
|
11 |
+
compressed = compress_text(text, compression_rate= word_reduction_factor, reference_text_steering=reference_text_steering)
|
12 |
+
perc_reduction = round(100 - (count_tokens(compressed) / count_tokens(text)) * 100, 2)
|
13 |
|
14 |
return f"{compressed}\n\nToken Reduction: {perc_reduction}%"
|
15 |
|
|
|
31 |
interactive=True,
|
32 |
label="Reduction Factor"
|
33 |
)
|
34 |
+
|
35 |
# Create the gradio interface
|
36 |
gr.Interface(
|
37 |
fn=predict,
|
38 |
+
inputs=[
|
39 |
+
gr.Textbox(lines=10, label="Input Text"),
|
40 |
+
reduction_factor,
|
41 |
+
gr.Textbox(lines=5, label="Reference text to steer compression (Optional)", placeholder="Enter reference text to steer compression towards this text")
|
42 |
+
],
|
43 |
outputs=[gr.Textbox(label="Compressed Text")],
|
44 |
title=gradio_title,
|
45 |
description=gradio_description,
|
46 |
examples=gradio_examples,
|
47 |
+
flagging_mode="never"
|
48 |
).launch()
|
requirements.txt
CHANGED
@@ -1,17 +1,3 @@
|
|
1 |
huggingface_hub==0.22.2
|
2 |
-
tiktoken
|
3 |
-
fasttext
|
4 |
-
minivectordb==1.5.5
|
5 |
gradio==4.31.4
|
6 |
-
|
7 |
-
scikit-learn
|
8 |
-
numpy==1.26.4
|
9 |
-
onnx
|
10 |
-
onnxruntime
|
11 |
-
onnxruntime-extensions
|
12 |
-
transformers==4.37.2
|
13 |
-
torch
|
14 |
-
faiss-cpu
|
15 |
-
thefuzz[speedup]
|
16 |
-
FlagEmbedding
|
17 |
-
peft
|
|
|
1 |
huggingface_hub==0.22.2
|
|
|
|
|
|
|
2 |
gradio==4.31.4
|
3 |
+
semantic-compressor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|