Spaces:
Runtime error
Runtime error
File size: 17,025 Bytes
83f7ed7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
import gradio as gr
import threading
import asyncio
import logging
from concurrent.futures import ThreadPoolExecutor
from functools import lru_cache
import requests
import json
# 假设这些是您的自定义模块,需要根据实际情况进行调整
from Config.config import VECTOR_DB, DB_directory
from Ollama_api.ollama_api import *
from rag.rag_class import *
# 设置日志
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# 根据VECTOR_DB选择合适的向量数据库
if VECTOR_DB == 1:
from embeding.chromadb import ChromaDB as vectorDB
vectordb = vectorDB(persist_directory=DB_directory)
elif VECTOR_DB == 2:
from embeding.faissdb import FaissDB as vectorDB
vectordb = vectorDB(persist_directory=DB_directory)
elif VECTOR_DB == 3:
from embeding.elasticsearchStore import ElsStore as vectorDB
vectordb = vectorDB()
# 存储上传的文件
uploaded_files = []
@lru_cache(maxsize=100)
def get_knowledge_base_files():
cl_dict = {}
cols = vectordb.get_all_collections_name()
for c_name in cols:
cl_dict[c_name] = vectordb.get_collcetion_content_files(c_name)
return cl_dict
knowledge_base_files = get_knowledge_base_files()
def upload_files(files):
if files:
new_files = [file.name for file in files]
uploaded_files.extend(new_files)
update_knowledge_base_files()
logger.info(f"Uploaded files: {new_files}")
return update_file_list(), new_files, "<div style='color: green; padding: 10px; border: 2px solid green; border-radius: 5px;'>Upload successful!</div>"
update_knowledge_base_files()
return update_file_list(), [], "<div style='color: red; padding: 10px; border: 2px solid red; border-radius: 5px;'>Upload failed!</div>"
def delete_files(selected_files):
global uploaded_files
uploaded_files = [f for f in uploaded_files if f not in selected_files]
if selected_files:
update_knowledge_base_files()
logger.info(f"Deleted files: {selected_files}")
return update_file_list(), "<div style='color: green; padding: 10px; border: 2px solid green; border-radius: 5px;'>Delete successful!</div>"
update_knowledge_base_files()
return update_file_list(), "<div style='color: red; padding: 10px; border: 2px solid red; border-radius: 5px;'>Delete failed!</div>"
def delete_collection(selected_knowledge_base):
if selected_knowledge_base and selected_knowledge_base != "创建知识库":
vectordb.delete_collection(selected_knowledge_base)
update_knowledge_base_files()
logger.info(f"Deleted collection: {selected_knowledge_base}")
return update_knowledge_base_dropdown(), "<div style='color: green; padding: 10px; border: 2px solid green; border-radius: 5px;'>Collection deleted successfully!</div>"
return update_knowledge_base_dropdown(), "<div style='color: red; padding: 10px; border: 2px solid red; border-radius: 5px;'>Delete collection failed!</div>"
async def async_vectorize_files(selected_files, selected_knowledge_base, new_kb_name, chunk_size, chunk_overlap):
if selected_files:
if selected_knowledge_base == "创建知识库":
knowledge_base = new_kb_name
vectordb.create_collection(selected_files, knowledge_base, chunk_size=chunk_size, chunk_overlap=chunk_overlap)
else:
knowledge_base = selected_knowledge_base
vectordb.add_chroma(selected_files, knowledge_base, chunk_size=chunk_size, chunk_overlap=chunk_overlap)
if knowledge_base not in knowledge_base_files:
knowledge_base_files[knowledge_base] = []
knowledge_base_files[knowledge_base].extend(selected_files)
logger.info(f"Vectorized files: {selected_files} for knowledge base: {knowledge_base}")
await asyncio.sleep(0) # 允许其他任务执行
return f"Vectorized files: {', '.join(selected_files)}\nKnowledge Base: {knowledge_base}\nUploaded Files: {', '.join(uploaded_files)}", "<div style='color: green; padding: 10px; border: 2px solid green; border-radius: 5px;'>Vectorization successful!</div>"
return "", "<div style='color: red; padding: 10px; border: 2px solid red; border-radius: 5px;'>Vectorization failed!</div>"
def update_file_list():
return gr.update(choices=uploaded_files, value=[])
def search_knowledge_base(selected_knowledge_base):
if selected_knowledge_base in knowledge_base_files:
kb_files = knowledge_base_files[selected_knowledge_base]
return gr.update(choices=kb_files, value=[])
return gr.update(choices=[], value=[])
def update_knowledge_base_files():
global knowledge_base_files
knowledge_base_files = get_knowledge_base_files()
# 处理聊天消息的函数
chat_history = []
def safe_chat_response(model_dropdown, vector_dropdown, chat_knowledge_base_dropdown, chain_dropdown, message):
try:
return chat_response(model_dropdown, vector_dropdown, chat_knowledge_base_dropdown, chain_dropdown, message)
except Exception as e:
logger.error(f"Error in chat response: {str(e)}")
return f"<div style='color: red;'>Error: {str(e)}</div>", ""
def chat_response(model_dropdown, vector_dropdown, chat_knowledge_base_dropdown, chain_dropdown, message):
global chat_history
if message:
chat_history.append(("User", message))
if chat_knowledge_base_dropdown == "仅使用模型":
rag = RAG_class(model=model_dropdown,persist_directory=DB_directory)
answer = rag.mult_chat(chat_history)
if chat_knowledge_base_dropdown and chat_knowledge_base_dropdown != "仅使用模型":
rag = RAG_class(model=model_dropdown, embed=vector_dropdown, c_name=chat_knowledge_base_dropdown, persist_directory=DB_directory)
if chain_dropdown == "复杂召回方式":
questions = rag.decomposition_chain(message)
answer = rag.rag_chain(questions)
elif chain_dropdown == "简单召回方式":
answer = rag.simple_chain(message)
else:
answer = rag.rerank_chain(message)
response = f" {answer}"
chat_history.append(("Bot", response))
return format_chat_history(chat_history), ""
def clear_chat():
global chat_history
chat_history = []
return format_chat_history(chat_history)
def format_chat_history(history):
formatted_history = ""
for user, msg in history:
if user == "User":
formatted_history += f'''
<div style="text-align: right; margin: 10px;">
<div style="display: inline-block; background-color: #DCF8C6; padding: 10px; border-radius: 10px; max-width: 60%;">
{msg}
</div>
<b>:User</b>
</div>
'''
else:
if "```" in msg: # 检测是否包含代码片段
code_content = msg.split("```")[1]
formatted_history += f'''
<div style="text-align: left; margin: 10px;">
<b>Bot:</b>
<div style="display: inline-block; background-color: #F1F0F0; padding: 10px; border-radius: 10px; max-width: 60%;">
<pre><code>{code_content}</code></pre>
</div>
</div>
'''
else:
formatted_history += f'''
<div style="text-align: left; margin: 10px;">
<b>Bot:</b>
<div style="display: inline-block; background-color: #F1F0F0; padding: 10px; border-radius: 10px; max-width: 60%;">
{msg}
</div>
</div>
'''
return formatted_history
def clear_status():
upload_status.update("")
delete_status.update("")
vectorize_status.update("")
delete_collection_status.update("")
def handle_knowledge_base_selection(selected_knowledge_base):
if selected_knowledge_base == "创建知识库":
return gr.update(visible=True, interactive=True), gr.update(choices=[], value=[]), gr.update(visible=False)
elif selected_knowledge_base == "仅使用模型":
return gr.update(visible=False, interactive=False), gr.update(choices=[], value=[]), gr.update(visible=False)
else:
return gr.update(visible=False, interactive=False), search_knowledge_base(selected_knowledge_base), gr.update(visible=True)
def update_knowledge_base_dropdown():
global knowledge_base_files
choices = ["创建知识库"] + list(knowledge_base_files.keys())
return gr.update(choices=choices)
def update_chat_knowledge_base_dropdown():
global knowledge_base_files
choices = ["仅使用模型"] + list(knowledge_base_files.keys())
return gr.update(choices=choices)
# SearxNG搜索函数
def search_searxng(query):
searxng_url = 'http://localhost:8080/search' # 替换为你的SearxNG实例URL
params = {
'q': query,
'format': 'json'
}
response = requests.get(searxng_url, params=params)
response.raise_for_status()
return response.json()
# Ollama总结函数
def summarize_with_ollama(model_dropdown,text, question):
prompt = """
根据下边的内容,回答用户问题,
内容为:‘{0}‘\n
问题为:{1}
""".format(text, question)
ollama_url = 'http://localhost:11434/api/generate' # 替换为你的Ollama实例URL
data = {
'model': model_dropdown,
"prompt": prompt,
"stream": False
}
response = requests.post(ollama_url, json=data)
response.raise_for_status()
return response.json()
# 处理函数
def ai_web_search(model_dropdown,user_query):
# 使用SearxNG进行搜索
search_results = search_searxng(user_query)
search_texts = [result['title'] + "\n" + result['content'] for result in search_results['results']]
combined_text = "\n\n".join(search_texts)
# 使用Ollama进行总结
summary = summarize_with_ollama(model_dropdown,combined_text, user_query)
# print(summary)
# 返回结果
return summary['response']
# 添加新的函数来处理AI网络搜索
# def ai_web_search(model_dropdown, query):
# try:
# # 这里添加实际的网络搜索和AI处理逻辑
# # 这只是一个示例,您需要根据实际情况实现
# search_result = f"搜索结果: {query}"
# ai_response = f"AI回答: 基于搜索结果,对于'{query}'的回答是..."
# return f"{search_result}\n\n{ai_response}"
# except Exception as e:
# logger.error(f"Error in AI web search: {str(e)}")
# return f"<div style='color: red;'>Error: {str(e)}</div>"
# 创建 Gradio 界面
with gr.Blocks() as demo:
with gr.Column():
# 添加标题
title = gr.HTML("<h1 style='text-align: center; font-size: 32px; font-weight: bold;'>RAG精致系统</h1>")
# 添加公告栏
announcement = gr.HTML("<div style='text-align: center; font-size: 18px; color: red;'>公告栏: RAG精致系统,【检索增强生成】系统!<br/>莫大大</div>")
with gr.Tabs():
with gr.TabItem("知识库"):
knowledge_base_dropdown = gr.Dropdown(choices=["创建知识库"] + list(knowledge_base_files.keys()),
label="选择知识库")
new_kb_input = gr.Textbox(label="输入新的知识库名称", visible=False, interactive=True)
file_input = gr.Files(label="Upload files")
upload_btn = gr.Button("Upload")
file_list = gr.CheckboxGroup(label="Uploaded Files")
delete_btn = gr.Button("Delete Selected Files")
with gr.Row():
chunk_size_dropdown = gr.Dropdown(choices=[50, 100, 200, 300, 500, 700], label="chunk_size", value=200)
chunk_overlap_dropdown = gr.Dropdown(choices=[20, 50, 100, 200], label="chunk_overlap", value=50)
vectorize_btn = gr.Button("Vectorize Selected Files")
delete_collection_btn = gr.Button("Delete Collection")
upload_status = gr.HTML()
delete_status = gr.HTML()
vectorize_status = gr.HTML()
delete_collection_status = gr.HTML()
with gr.TabItem("Chat"):
with gr.Row():
model_dropdown = gr.Dropdown(choices=get_llm(), label="模型")
vector_dropdown = gr.Dropdown(choices=get_embeding_model(), label="向量")
chat_knowledge_base_dropdown = gr.Dropdown(choices=["仅使用模型"] + vectordb.get_all_collections_name(), label="知识库")
chain_dropdown = gr.Dropdown(choices=["复杂召回方式", "简单召回方式","rerank"], label="chain方式", visible=False)
chat_display = gr.HTML(label="Chat History")
chat_input = gr.Textbox(label="Type a message")
chat_btn = gr.Button("Send")
clear_btn = gr.Button("Clear Chat History")
with gr.TabItem("AI网络搜索"):
with gr.Row():
web_search_model_dropdown = gr.Dropdown(choices=get_llm(), label="模型")
web_search_output = gr.Textbox(label="搜索结果和AI回答", lines=10)
web_search_input = gr.Textbox(label="输入搜索查询")
web_search_btn = gr.Button("搜索")
def handle_upload(files):
upload_result, new_files, status = upload_files(files)
threading.Thread(target=clear_status).start()
return upload_result, new_files, status, update_chat_knowledge_base_dropdown()
def handle_delete(selected_knowledge_base, selected_files):
tmp = []
cols_files_tmp = vectordb.get_collcetion_content_files(c_name=selected_knowledge_base)
for i in selected_files:
if i in cols_files_tmp:
tmp.append(i)
del cols_files_tmp
if tmp:
vectordb.del_files(tmp, c_name=selected_knowledge_base)
del tmp
delete_result, status = delete_files(selected_files)
threading.Thread(target=clear_status).start()
return delete_result, status, update_chat_knowledge_base_dropdown()
def handle_vectorize(selected_files, selected_knowledge_base, new_kb_name, chunk_size, chunk_overlap):
vectorize_result, status = asyncio.run(async_vectorize_files(selected_files, selected_knowledge_base, new_kb_name, chunk_size, chunk_overlap))
threading.Thread(target=clear_status).start()
return vectorize_result, status, update_knowledge_base_dropdown(), update_chat_knowledge_base_dropdown()
def handle_delete_collection(selected_knowledge_base):
result, status = delete_collection(selected_knowledge_base)
threading.Thread(target=clear_status).start()
return result, status, update_chat_knowledge_base_dropdown()
knowledge_base_dropdown.change(
handle_knowledge_base_selection,
inputs=knowledge_base_dropdown,
outputs=[new_kb_input, file_list, chain_dropdown]
)
upload_btn.click(handle_upload, inputs=file_input, outputs=[file_list, file_list, upload_status, chat_knowledge_base_dropdown])
delete_btn.click(handle_delete, inputs=[knowledge_base_dropdown, file_list], outputs=[file_list, delete_status, chat_knowledge_base_dropdown])
vectorize_btn.click(handle_vectorize, inputs=[file_list, knowledge_base_dropdown, new_kb_input, chunk_size_dropdown, chunk_overlap_dropdown],
outputs=[gr.Textbox(visible=False), vectorize_status, knowledge_base_dropdown, chat_knowledge_base_dropdown])
delete_collection_btn.click(handle_delete_collection, inputs=knowledge_base_dropdown,
outputs=[knowledge_base_dropdown, delete_collection_status, chat_knowledge_base_dropdown])
chat_btn.click(chat_response, inputs=[model_dropdown, vector_dropdown, chat_knowledge_base_dropdown, chain_dropdown, chat_input], outputs=[chat_display, chat_input])
clear_btn.click(clear_chat, outputs=chat_display)
chat_knowledge_base_dropdown.change(
fn=lambda selected: gr.update(visible=selected != "仅使用模型"),
inputs=chat_knowledge_base_dropdown,
outputs=chain_dropdown
)
# 添加新的点击事件处理
web_search_btn.click(
ai_web_search,
inputs=[web_search_model_dropdown, web_search_input],
outputs=web_search_output
)
demo.launch(debug=True,share=True) |