Spaces:
Runtime error
Runtime error
File size: 13,130 Bytes
455a40f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import itertools
import random
import unittest
import numpy as np
from transformers import ClapFeatureExtractor
from transformers.testing_utils import require_torch, require_torchaudio
from transformers.utils.import_utils import is_torch_available
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_torch_available():
import torch
global_rng = random.Random()
# Copied from tests.models.whisper.test_feature_extraction_whisper.floats_list
def floats_list(shape, scale=1.0, rng=None, name=None):
"""Creates a random float32 tensor"""
if rng is None:
rng = global_rng
values = []
for batch_idx in range(shape[0]):
values.append([])
for _ in range(shape[1]):
values[-1].append(rng.random() * scale)
return values
@require_torch
@require_torchaudio
# Copied from tests.models.whisper.test_feature_extraction_whisper.WhisperFeatureExtractionTester with Whisper->Clap
class ClapFeatureExtractionTester(unittest.TestCase):
def __init__(
self,
parent,
batch_size=7,
min_seq_length=400,
max_seq_length=2000,
feature_size=10,
hop_length=160,
chunk_length=8,
padding_value=0.0,
sampling_rate=4_000,
return_attention_mask=False,
do_normalize=True,
):
self.parent = parent
self.batch_size = batch_size
self.min_seq_length = min_seq_length
self.max_seq_length = max_seq_length
self.seq_length_diff = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
self.padding_value = padding_value
self.sampling_rate = sampling_rate
self.return_attention_mask = return_attention_mask
self.do_normalize = do_normalize
self.feature_size = feature_size
self.chunk_length = chunk_length
self.hop_length = hop_length
def prepare_feat_extract_dict(self):
return {
"feature_size": self.feature_size,
"hop_length": self.hop_length,
"chunk_length": self.chunk_length,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def prepare_inputs_for_common(self, equal_length=False, numpify=False):
def _flatten(list_of_lists):
return list(itertools.chain(*list_of_lists))
if equal_length:
speech_inputs = [floats_list((self.max_seq_length, self.feature_size)) for _ in range(self.batch_size)]
else:
# make sure that inputs increase in size
speech_inputs = [
floats_list((x, self.feature_size))
for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff)
]
if numpify:
speech_inputs = [np.asarray(x) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
# Copied from tests.models.whisper.test_feature_extraction_whisper.WhisperFeatureExtractionTest with Whisper->Clap
class ClapFeatureExtractionTest(SequenceFeatureExtractionTestMixin, unittest.TestCase):
feature_extraction_class = ClapFeatureExtractor
def setUp(self):
self.feat_extract_tester = ClapFeatureExtractionTester(self)
def test_call(self):
# Tests that all call wrap to encode_plus and batch_encode_plus
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
# create three inputs of length 800, 1000, and 1200
speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs]
# Test feature size
input_features = feature_extractor(np_speech_inputs, padding="max_length", return_tensors="np").input_features
self.assertTrue(input_features.ndim == 4)
# Test not batched input
encoded_sequences_1 = feature_extractor(speech_inputs[0], return_tensors="np").input_features
encoded_sequences_2 = feature_extractor(np_speech_inputs[0], return_tensors="np").input_features
self.assertTrue(np.allclose(encoded_sequences_1, encoded_sequences_2, atol=1e-3))
# Test batched
encoded_sequences_1 = feature_extractor(speech_inputs, return_tensors="np").input_features
encoded_sequences_2 = feature_extractor(np_speech_inputs, return_tensors="np").input_features
for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))
def test_double_precision_pad(self):
import torch
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
np_speech_inputs = np.random.rand(100, 32).astype(np.float64)
py_speech_inputs = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
np_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="np")
self.assertTrue(np_processed.input_features.dtype == np.float32)
pt_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="pt")
self.assertTrue(pt_processed.input_features.dtype == torch.float32)
def _load_datasamples(self, num_samples):
from datasets import load_dataset
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
# automatic decoding with librispeech
speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"]
return [x["array"] for x in speech_samples]
def integration_test_fusion(self):
# fmt: off
EXPECTED_INPUT_FEATURES = torch.tensor(
[
[
-30.2194, -22.4424, -18.6442, -17.2452, -22.7392, -32.2576, -36.1404,
-35.6120, -29.6229, -29.0454, -32.2157, -36.7664, -29.4436, -26.7825,
-31.1811, -38.3918, -38.8749, -43.4485, -47.6236, -38.7528, -31.8574,
-39.0591, -41.3190, -32.3319, -31.4699, -33.4502, -36.7412, -34.5265,
-35.1091, -40.4518, -42.7346, -44.5909, -44.9747, -45.8328, -47.0772,
-46.2723, -44.3613, -48.6253, -44.9551, -43.8700, -44.6104, -48.0146,
-42.7614, -47.3587, -47.4369, -45.5018, -47.0198, -42.8759, -47.5056,
-47.1567, -49.2621, -49.5643, -48.4330, -48.8495, -47.2512, -40.8439,
-48.1234, -49.1218, -48.7222, -50.2399, -46.8487, -41.9921, -50.4015,
-50.7827
],
[
-89.0141, -89.1411, -88.8096, -88.5480, -88.3481, -88.2038,
-88.1105, -88.0647, -88.0636, -88.1051, -88.1877, -88.1110,
-87.8613, -88.6679, -88.2685, -88.9684, -88.7977, -89.6264,
-89.9299, -90.3184, -91.1446, -91.9265, -92.7267, -93.6099,
-94.6395, -95.3243, -95.5923, -95.5773, -95.0889, -94.3354,
-93.5746, -92.9287, -92.4525, -91.9798, -91.8852, -91.7500,
-91.7259, -91.7561, -91.7959, -91.7070, -91.6914, -91.5019,
-91.0640, -90.0807, -88.7102, -87.0826, -85.5956, -84.4441,
-83.8461, -83.8605, -84.6702, -86.3900, -89.3073, -93.2926,
-96.3813, -97.3529, -100.0000, -99.6942, -92.2851, -87.9588,
-85.7214, -84.6807, -84.1940, -84.2021
],
[
-51.6882, -50.6852, -50.8198, -51.7428, -53.0325, -54.1619, -56.4903,
-59.0314, -60.7996, -60.5164, -59.9680, -60.5393, -62.5796, -65.4166,
-65.6149, -65.1409, -65.7226, -67.9057, -72.5089, -82.3530, -86.3189,
-83.4241, -79.1279, -79.3384, -82.7335, -79.8316, -80.2167, -74.3638,
-71.3930, -75.3849, -74.5381, -71.4504, -70.3791, -71.4547, -71.8820,
-67.3885, -69.5686, -71.9852, -71.0307, -73.0053, -80.8802, -72.9227,
-63.8526, -60.3260, -59.6012, -57.8316, -61.0603, -67.3403, -67.1709,
-60.4967, -60.5079, -68.3345, -67.5213, -70.6416, -79.6219, -78.2198,
-74.6851, -69.5718, -69.4968, -70.6882, -66.8175, -73.8558, -74.3855,
-72.9405
]
]
)
# fmt: on
MEL_BIN = [963, 963, 161]
input_speech = self._load_datasamples(1)
feaure_extractor = ClapFeatureExtractor()
for padding, EXPECTED_VALUES, idx_in_mel in zip(
["repeat", "repeatpad", None], EXPECTED_INPUT_FEATURES, MEL_BIN
):
input_features = feaure_extractor(input_speech, return_tensors="pt", padding=padding).input_features
self.assertTrue(torch.allclose(input_features[0, idx_in_mel], EXPECTED_VALUES, atol=1e-4))
def integration_test_rand_trunc(self):
# TODO in this case we should set the seed and use a longer audio to properly see the random truncation
# fmt: off
EXPECTED_INPUT_FEATURES = torch.tensor(
[
[
-42.3330, -36.2735, -35.9231, -43.5947, -48.4525, -46.5227, -42.6477,
-47.2740, -51.4336, -50.0846, -51.8711, -50.4232, -47.4736, -54.2275,
-53.3947, -55.4904, -54.8750, -54.5510, -55.4156, -57.4395, -51.7385,
-55.9118, -57.7800, -63.2064, -67.0651, -61.4379, -56.4268, -54.8667,
-52.3487, -56.4418, -57.1842, -55.1005, -55.6366, -59.4395, -56.8604,
-56.4949, -61.6573, -61.0826, -60.3250, -63.7876, -67.4882, -60.2323,
-54.6886, -50.5369, -47.7656, -45.8909, -49.1273, -57.4141, -58.3201,
-51.9862, -51.4897, -59.2561, -60.4730, -61.2203, -69.3174, -69.7464,
-65.5861, -58.9921, -59.5610, -61.0584, -58.1149, -64.4045, -66.2622,
-64.4610
],
[
-41.2298, -38.4211, -39.8834, -45.9950, -47.3839, -43.9849, -46.0371,
-52.5490, -56.6912, -51.8794, -50.1284, -49.7506, -53.9422, -63.2854,
-56.5754, -55.0469, -55.3181, -55.8115, -56.0058, -57.9215, -58.7597,
-59.1994, -59.2141, -64.4198, -73.5138, -64.4647, -59.3351, -54.5626,
-54.7508, -65.0230, -60.0270, -54.7644, -56.0108, -60.1531, -57.6879,
-56.3766, -63.3395, -65.3032, -61.5202, -63.0677, -68.4217, -60.6868,
-54.4619, -50.8533, -47.7200, -45.9197, -49.0961, -57.7621, -59.0750,
-51.9122, -51.4332, -59.4132, -60.3415, -61.6558, -70.7049, -69.7905,
-66.9104, -59.0324, -59.6138, -61.2023, -58.2169, -65.3837, -66.4425,
-64.4142
],
[
-51.6882, -50.6852, -50.8198, -51.7428, -53.0325, -54.1619, -56.4903,
-59.0314, -60.7996, -60.5164, -59.9680, -60.5393, -62.5796, -65.4166,
-65.6149, -65.1409, -65.7226, -67.9057, -72.5089, -82.3530, -86.3189,
-83.4241, -79.1279, -79.3384, -82.7335, -79.8316, -80.2167, -74.3638,
-71.3930, -75.3849, -74.5381, -71.4504, -70.3791, -71.4547, -71.8820,
-67.3885, -69.5686, -71.9852, -71.0307, -73.0053, -80.8802, -72.9227,
-63.8526, -60.3260, -59.6012, -57.8316, -61.0603, -67.3403, -67.1709,
-60.4967, -60.5079, -68.3345, -67.5213, -70.6416, -79.6219, -78.2198,
-74.6851, -69.5718, -69.4968, -70.6882, -66.8175, -73.8558, -74.3855,
-72.9405
]
]
)
# fmt: on
input_speech = self._load_datasamples(1)
feaure_extractor = ClapFeatureExtractor()
for padding, EXPECTED_VALUES in zip(["repeat", "repeatpad", None], EXPECTED_INPUT_FEATURES):
input_features = feaure_extractor(
input_speech, return_tensors="pt", truncation="rand_trunc", padding=padding
).input_features
self.assertTrue(torch.allclose(input_features[0, 0, :30], EXPECTED_VALUES, atol=1e-4))
|