Phi3-VLM-On-Cifar10 / train_phi_with_siglip.py
chbsaikiran's picture
Intial Commit
5e37be9
import torch
import torch.nn as nn
from torch.optim import AdamW
from transformers import (
SiglipVisionModel,
AutoTokenizer,
AutoImageProcessor,
AutoModelForCausalLM,
BitsAndBytesConfig
)
from peft import prepare_model_for_kbit_training, LoraConfig, get_peft_model
from torchvision.datasets import CIFAR10
from torch.utils.data import DataLoader, Subset
import torchvision.transforms as transforms
from tqdm import tqdm
import os
from PIL import Image
class LinearProjection(nn.Module):
def __init__(self, input_dim, output_dim):
super().__init__()
self.linear = nn.Linear(input_dim, output_dim)
def forward(self, x):
return self.linear(x)
class ImageTextProjection(nn.Module):
def __init__(self, image_dim, text_dim):
super().__init__()
self.image_projection = nn.Linear(image_dim, text_dim)
def forward(self, x):
return self.image_projection(x)
def get_image_embedding(image, siglip_model, siglip_processor, linear_proj, device):
with torch.no_grad():
# Process image through SigLIP
inputs = siglip_processor(image, return_tensors="pt")
# Move inputs to the same device as model
inputs = {k: v.to(device) if isinstance(v, torch.Tensor) else v for k, v in inputs.items()}
outputs = siglip_model(**inputs)
image_features = outputs.pooler_output
# Project through trained linear layer
projected_features = linear_proj(image_features)
return projected_features
def main(
num_images=100,
batch_size=4, # Smaller batch size due to memory constraints
num_epochs=100,
learning_rate=2e-4,
questions=None # List of 5 questions to be provided
):
if questions is None or len(questions) != 5:
print("Please provide exactly 5 questions!")
return
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Load SigLIP model and processor
siglip_model = SiglipVisionModel.from_pretrained("google/siglip-so400m-patch14-384").to(device)
siglip_processor = AutoImageProcessor.from_pretrained("google/siglip-so400m-patch14-384")
# Load trained linear projection
dummy_image = Image.new('RGB', (384, 384), color='black')
with torch.no_grad():
siglip_inputs = siglip_processor(dummy_image, return_tensors="pt")
# Move inputs to device
siglip_inputs = {k: v.to(device) if isinstance(v, torch.Tensor) else v for k, v in siglip_inputs.items()}
siglip_outputs = siglip_model(**siglip_inputs)
siglip_output_dim = siglip_outputs.pooler_output.shape[-1]
# First load the checkpoint to get the correct output dimension
checkpoint = torch.load('linear_projection_final.pth', map_location=device)
output_dim = checkpoint['linear.weight'].shape[0] # Get the output dimension from saved weights
print(f"Loading linear projection with output dimension: {output_dim}")
# Initialize linear projection with correct dimensions
linear_proj = LinearProjection(siglip_output_dim, output_dim).to(device)
try:
linear_proj.load_state_dict(checkpoint)
print("Successfully loaded linear projection weights")
except Exception as e:
print(f"Error loading linear projection weights: {e}")
return
# Load Phi model with 4-bit quantization
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=False
)
phi_model = AutoModelForCausalLM.from_pretrained(
"microsoft/Phi-3-mini-4k-instruct",
quantization_config=bnb_config,
device_map="auto"
)
phi_tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
# Add padding token if not present
if phi_tokenizer.pad_token is None:
phi_tokenizer.pad_token = phi_tokenizer.eos_token
# Get embedding dimension from phi model
phi_embed_dim = phi_model.get_input_embeddings().weight.shape[1]
# Create projection layer for image embeddings
image_text_proj = ImageTextProjection(output_dim, phi_embed_dim).to(device)
# Prepare model for k-bit training
phi_model = prepare_model_for_kbit_training(phi_model)
# Setup LoRA configuration
lora_config = LoraConfig(
r=16,
lora_alpha=32,
target_modules=["mlp.dense_h_to_4h", "mlp.dense_4h_to_h", "self_attn.qkv_proj", "self_attn.dense"],
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM"
)
# Get PEFT model
phi_model = get_peft_model(phi_model, lora_config)
# Freeze SigLIP and linear projection
for param in siglip_model.parameters():
param.requires_grad = False
for param in linear_proj.parameters():
param.requires_grad = False
# Load CIFAR10 test dataset
transform = transforms.Compose([
transforms.Resize((384, 384)),
transforms.ToTensor(),
])
test_dataset = CIFAR10(root='./data', train=False, download=True, transform=transform)
subset_indices = list(range(num_images))
subset_dataset = Subset(test_dataset, subset_indices)
dataloader = DataLoader(subset_dataset, batch_size=batch_size, shuffle=False)
# Optimizer for both phi model and image projection
optimizer = AdamW([
{'params': phi_model.parameters()},
{'params': image_text_proj.parameters()}
], lr=learning_rate)
# Training loop
for epoch in range(num_epochs):
total_loss = 0
phi_model.train()
image_text_proj.train()
progress_bar = tqdm(dataloader, desc=f'Epoch {epoch+1}/{num_epochs}')
for batch_idx, (images, _) in enumerate(progress_bar):
images = images.to(device)
batch_size = images.size(0)
# Get image embeddings
image_embeddings = get_image_embedding(images, siglip_model, siglip_processor, linear_proj, device)
# Process each question
for q_idx, question in enumerate(questions):
# Read corresponding answers
answers = []
for idx in range(batch_size):
global_idx = batch_idx * batch_size + idx
if global_idx < num_images:
file_path = f'qa_outputs/image_{global_idx}_extr.txt'
try:
with open(file_path, 'r') as f:
lines = f.readlines()
answer = lines[q_idx].strip() if q_idx < len(lines) else ""
answers.append(answer)
except:
answers.append("No answer available")
# Tokenize questions and answers for the entire batch
question_tokens = phi_tokenizer(
[question] * batch_size,
padding=True,
truncation=True,
max_length=512,
return_tensors="pt"
).to(device)
target_tokens = phi_tokenizer(
answers,
padding=True,
truncation=True,
max_length=512,
return_tensors="pt"
).to(device)
# Get question embeddings for the entire batch
question_embeds = phi_model.get_input_embeddings()(question_tokens['input_ids']) # [batch_size, seq_len, embed_dim]
# Project and prepare image embeddings for the entire batch
image_embeds = image_text_proj(image_embeddings) # [batch_size, embed_dim]
image_embeds = image_embeds.unsqueeze(1) # [batch_size, 1, embed_dim]
# Combine image embeddings with question embeddings
combined_embedding = torch.cat([
image_embeds, # [batch_size, 1, embed_dim]
question_embeds # [batch_size, seq_len, embed_dim]
], dim=1) # [batch_size, 1+seq_len, embed_dim]
# Create attention mask for the combined sequence
attention_mask = torch.ones(
(batch_size, combined_embedding.size(1)),
dtype=torch.long,
device=device
)
# Prepare labels by shifting them right
labels = target_tokens['input_ids'].clone()
labels = torch.cat([
torch.full((batch_size, combined_embedding.size(1) - 1), -100, device=device),
labels
], dim=1)[:, :combined_embedding.size(1)]
# Forward pass
outputs = phi_model(
inputs_embeds=combined_embedding,
attention_mask=attention_mask,
labels=labels
)
loss = outputs.loss
total_loss += loss.item()
# Backward pass
loss.backward()
optimizer.step()
optimizer.zero_grad()
progress_bar.set_postfix({'loss': loss.item()})
avg_epoch_loss = total_loss / (len(dataloader) * len(questions) * batch_size)
print(f'Epoch {epoch+1}/{num_epochs}, Average Loss: {avg_epoch_loss:.4f}')
# Save the trained models
phi_model.save_pretrained('phi_model_trained')
torch.save(image_text_proj.state_dict(), 'image_text_proj.pth')
print("Training completed. Models saved as 'phi_model_trained' and 'image_text_proj.pth'")
if __name__ == "__main__":
# Example questions - replace with your actual questions
questions = [
"Give a description of the image?",
"How does the main object in the image look like?",
"How can the main object in the image be useful to humans?",
"What is the color of the main object in the image?",
"Describe the setting of the image?"
]
main(questions=questions)